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Overview
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 Project Start Date:  Jan 2010
 Project end date:  FY2013
 Percent complete:  50%

 Inadequate capability to 
accurately simulate

– in-cylinder combustion over a range of 
temperature and pressure conditions

– Emission formation
– Effects of multi-component fuels

• DOE-EERE  Argonne Engr.
- $250K  (FY2010)

- $400K (FY2011)

• DOE-BES  Argonne 
Chemistry

- $600K (FY10 & 11)

Timeline

Budget

Barriers

• MIT 
• Purdue Univ.
• Univ. Akron
• Marquette University
• LLNL

Partners



Relevance
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Objectives: To help develop a predictive capability of in-cylinder 
combustion and emissions formation through advances made in 
chemical kinetics

High efficiency
Low emissions Enable

- Advanced LTC regimes
- Mixed mode combustion
- Advanced / alternative 
fuels

Predictive capability of in-
cylinder combustion and 
emissions formation

Advances in 
chemical kinetics



Milestones for FY10
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Month/Year Milestone
Mar-10
(Completed)

Improve Argonne’s RCM  
Make hardware changes for improved performance

- Fix leaky seals
- Guided by CFD improve combustion chamber geometry for temperature 

uniformity of the core region

May-10
(Completed)

Develop computer program for data analysis

- Run tests using inert gases with similar specific heat ratio as the 
combustible mixture

- Through measured profiles deduce correlations for heat transfer losses 
- Develop appropriate code to analyze measured pressure data using 

CHEMKIN and SENKIN

Nov-10
(Delayed)

Validation through tests on methane-air mixtures

- Perform tests on various methane-air mixtures 
- Analyze and validate the model using established chemical kinetic 

mechanisms



Milestones for FY11
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Month/Year Milestone
March-11
(80% Completed)

Develop auxiliary systems
- Liquid fueling system: (low BPT fuels) to ensure accurate fuel metering 

and also achieve a uniform fuel-air mixture
- Aerosol fueling: (high BPT fuels) to achieve uniform fuel-air mixtures
- Rapid sampling apparatus:  To track time resolved concentration of 

species
- Imaging/ flame speed:  To determine fundamental properties of fuel-air 

mixtures

June-11 Conduct tests on low-BPT fuels

- Ethanol and iso-octane
- Other alcohols and gasoline surrogates (time permitting)
- Develop data complementary to shock tube studies
- Validate chemical mechanisms for single component fuels

Nov-11 Conduct tests on high-BPT fuels

- N-Heptane
- Biodiesels and diesel surrogates (time permitting)
- Develop auto-ignition data complementary to shock tube studies
- In association with LLNL develop /validate chemical mechanisms



Approach/ Strategy
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First let us look at the problem at hand….

7

Practical combustion 
environment

Fluid Mechanics
u, v, w

u’, v’, w’, ….

Chemistry
Species

Reaction rates
…..
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The Current Method of Validating Combustion 
Chemistry

Experimental Devices

 Bench scale flames
– Laminar flames

– Opposed flow 
flames

 Jet-stirred reactors

 Shock tubes

Chemical Kinetic 
Mechanisms
 Detailed

 Reduced

8

Metrics

 Autoignition
delays

 Laminar Flame 
speed

 Extinction 
strain rates
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The Current Method of Using Combustion Chemistry

Chemical Kinetic 
Mechanisms

 Detailed

 Reduced
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Computer 
Modeling

 IC engines

 Gas turbines

 Burners

 ……

Practical 
Combustion 

Systems Metrics

 Rate of Heat 
release

 Emissions

 Ignition

 …..
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For chemical kinetic studies a quiescent, 
isothermal, adiabatic combustion zone is desirable 
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Shock Tube
High P, high T
τ < 16 ms

RCM
High P, low T
τ > 10 ms

Courtesy
Ron 
Hanson,
Stanford1-cyl Engine

High P, all T

 Highly controlled air-fuel mixture

 No residual gas
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A RCM’s operational envelope covers most of the 
engineering applications
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Argonne’s RCM and shock tube will be used to 
obtain complementary chemical kinetic data

12

0.8 0.9 1.0 1.1 1.2 1.3 1.4

1

10

100

90% CH4, 10% C3H8, φ = 3.0, P = 30 atm
 Shock tube
 RCM
 heat loss

Ig
ni

tio
n 

de
la

y 
tim

e,
 τ 

(m
s)

1000 K / T

Pneumatic
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Combustion 
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Air Tank 
(Behind Panel)

Hydraulic and
Pneumatic 

System

Argonne’s RCM

Argonne’s 
shock tube

Driver section

Driven section
Densitometer & 

Mass Spec.

(Courtesy: Henry Curran, NUIG)
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Combustion
Chamber

Driving-air
chamber

Driving-air
chamber

Hydraulic
lock

Hydraulic
lock

Argonne’s Rapid Compression Machine

 Modified version of MIT design

 Compression Ratio ~ 12

 1.1” long 2.5” Dia. Comb. chamber

 < 17 ms Compression time

 Opposed piston design to reduce 
vibration

T2 ~ 723 K

P2 ≤ 77 bar

P3 ≤ 365 bar

- 1023 K 



Technical Accomplishments and Progress
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Guided by CFD simulations RCM hardware was 
modified to ensure isothermal zone ±10 K
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Half cross-section

Original

Half cross-section

After Modifications

Introduced

Crevice
Removed 

Step
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A new piston sealing arrangement was used for 
leak-free performance and reduced dead volume

ACE054,      ACE 2011 Program Review, Washington, D.C., May 9-13

16

Gen-I Gen-II Two-part design
(Final)

Crevice PTFE  seal



Data analysis model was developed to be able to validate 
chemical mechanisms using the RCM results 

Courtesy : U. Akron 

“Effective volume” method used to account for heat transfer to walls 
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determined through tests on inert gas (Argon/ Nitrogen) 

Mass conservation k=1,2,…,N

Energy conservation

Chemkin
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Progress delayed due to accidental damage to the 
hydraulic chamber flange
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Further tests delayed by 4 months as a 
new flange was manufactured

Damaged hydraulic breaking chamber



Development of auxiliaries: Liquid fueling system
 Use of liquid fuels (especially bio-diesel) poses new challenges

– Boiling point as high as 350oC

– Tendency to separate and pool / condense on the walls

– Preferential evaporation for multi-component fuels

– Chemical reactions prior to compression

MIT method (for low BPT fuels)

 Heat the whole RCM to 120oC using heaters (Hardware in place)

 Meter the liquid fuel using a syringe pump

Marquette University/ Stanford/ MSU Method (for high-BPT fuels)

 Nebulize the fuel and rely on increased temperature during compression 

 Geometries being optimized to minimize droplet impingement/ separation

19

Droplet size distribution
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Development of auxiliaries: Fast gas sampling 
device

Courtesy:  Toyota R&D.

 The sampling system enables us to collect gas samples directly from the RCM 
combustion chamber.

 Min. resolution: 55 µsec (= 1° crank angle @3000 rpm)

 Time resolved sampling and subsequent chemical analyses will trace the formation 
of individual chemical species and nano-particles. 
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Amplifier

Digital delay/
pulse generator

High voltage pulser Piezo-actuator

Sampling valve
assembly
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Development of auxiliaries:  Flame speed 
measurement strategy in the opposed-piston RCM
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- Flame speed is a fundamental fuel property that determines burning rate
- Serves as a standard to validate chemical mechanisms

Spherical Chambers Cylindrical Chambers RCM Comb. 
Chamber

D∼14” L/D∼3-4 L/D∼0.44

Combustion chamber
D=2.5”; W=1.1”

Sapphire lens

∼16”

Spark plug Camera lens

High-speed 
Phantom camera Image capture

Trig. From RCM 
controls

- Optical access through a spark plug port on the combustion chamber wall
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Flame radius was measured for various fuels under 
typical in-cylinder conditions (32.5 bar, 706 K)
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50% H2/ 50% CO; φ=0.8; ∆t=0.263ms 

Measured flame radius 
progressed linearly with time.

Methane



Confinement issues dominate and limit flame speed 
measurements in the RCM
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- For given geometry and camera capture rates (∼ 4000 fps) various fuels were 
used to obtain a range of stretch rates.

- Except in the case of (hydrogen rich) fuels with very high SL values, typical 
hydrocarbon measurements were confinement limited.

- Currently, evaluating  strategies to reduce wall effects, and to use theoretical 
treatments to correct for such effects.

(M. P. Burke et al., Combustion and Flame, 2009)

Ideal
Ignition 
effects

Confinement 
effects
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Collaboration and Coordination with Other 
Institutions

 MIT (Wai Cheng)
– Design of the RCM

 Univ. Akron (Gaurav Mittal)
– Chemkin-pro model

 Purdue University (Li Qiao)
– Flame speed measurements

 Marquette University  (Scott Goldsborough)
– Aerosol liquid fueling system

 Lawrence Livermore National Laboratory (Bill Pitz)
– Gasoline surrogate mechanism development
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Proposed Future Work :  Ignition/ combustion 
characteristics of alternative fuels and fuel blends
 Ethanol:  (BPT: 78.4oC)

– Energy Density:  19.6 MJ/L

– Used as 15% to 85% blend in gasoline

– RCM will be heated to 110oC.  Mixture preparation via. MIT method. 

 Butanol: (BPT: 117.2oC)
– Processes exist for commercial production of biobutanol

– Energy Density: 29.2 MJ/L

– RCM will be heated to 120oC.  Mixture preparation via MIT method.

 Biodiesel: methyl, ethyl or propyl mono esters (Flash Pt: >120oC, BPT= 200-350oC)
– Higher lubricity, Cetane number > 47

– At present, most biodiesel in the U S is made from soy oil

– ASTM D 6751 standards apply

– Used as blends B0 ……B100

– RCM will be heated to 350oC?.  An aerosol fueling method is being developed in 
association with Marquette Univ., Michigan State Univ.
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Summary

To provide accurate kinetic data to conventional/ alternative and designer fuels under 
engine like conditions using revived Argonne’s Rapid Compression Machine. 

 Guided by CFD analysis, piston geometries were altered to obtain a post-
compression isothermal zone to within E10 K.

 A zero-dimensional model was developed to assist in validating chemical 
mechanisms using measured pressure traces.

 Accidental damage to the RCM hardware introduced unforeseen delays; attention 
was diverted to developing the auxiliary systems while RCM was being repaired

– Aerosol Liquid fueling system

– Fast-sampling system

– Imaging for flame speed calculation

 Very soon tests will be conducted in low-volatile fuels that will be followed by 
those on bio-diesel surrogates

26
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