


# Impact of Biodiesel on Modern Diesel Engine Emissions



Vehicle Technologies Program Merit Review – Fuels and Lubricants Technologies

**PI: Bob McCormick** 

**Presenter: Aaron Williams** 

May 9, 2011 Washington, DC

Project ID: FT011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

## **Overview**

#### **Timeline**

Start date: Oct 2010 End date: Sept 2011 Percent complete: 66% *Program funded one year at a time* 

#### **Budget**

Total project funding

FY10: \$1.8 M

FY11: \$1.6 M - estimated

NBB cooperative research and development agreement (CRADA) provides around \$750K per year to costshare biodiesel research

#### **Barriers**

VTP MYPP Fuels & Lubricants Technologies Goals

- By 2013 identify light-duty (LD) nonpetroleum–based fuels that can achieve 10% petroleum displacement by 2025
- By 2015 identify heavy-duty (HD) nonpetroleum–based fuels that can achieve 15% petroleum displacement by 2030

#### **Partners**

- National Biodiesel Board (NBB) and member companies
- Manufacturers of Emission Controls Association and member companies
- Engine Manufacturers Association and member companies
- Coordinating Research Council and member companies
- Colorado School of Mines
- Oak Ridge National Laboratory
- State of Colorado

# **Relevance / Objectives**

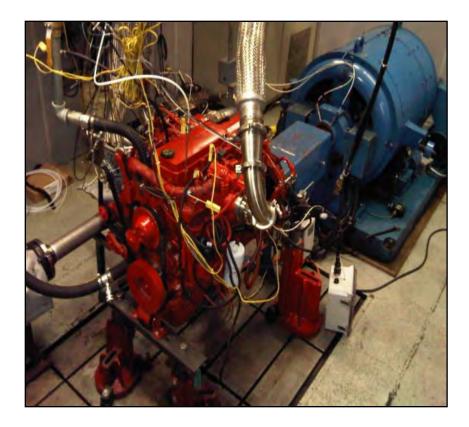
Objective: Solve technical problems that are preventing expanded markets for current and future biofuels and biofuel blends

**Necessary to achieve MYPP petroleum displacement goals and RFS requirements** Goal of solving problems for current biofuels and early identification of problems for future/proposed biofuels – valuable information for planning future R&D

#### **Relevance**

- To date there is a large amount of data showing biodiesel's impact on emissions from older model engines manufactured prior to 2007 EPA standards
- There is a lack of data showing biodiesel's impact on modern diesel engines equipped with aftertreatment technology manufactured after 2007

#### **Objectives**

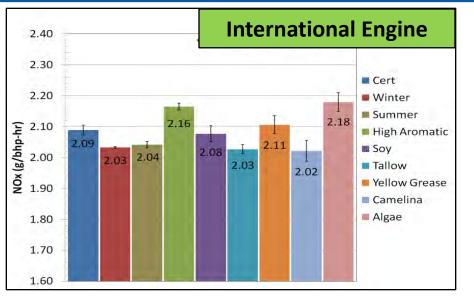

- Investigate the impact of biodiesel on emissions in modern engines equipped with aftertreatment systems
- Investigate how changes in emissions seen with biodiesel compare to changes in emissions seen with various petroleum diesel fuels available in the market
- Investigate how biodiesel will impact the operation and maintenance of diesel aftertreatment systems

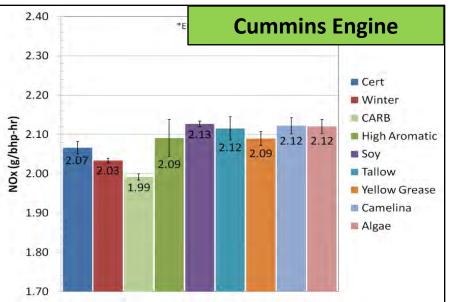
### **Biodiesel Tested in Model Year 2008 Engines**

- 2008 International MaxxForce 10
- DOC + DPF equipped engine
- Used in fire truck applications

- 2008 Cummins ISB
- DOC+DPF equipped engine
- Used in transit bus application



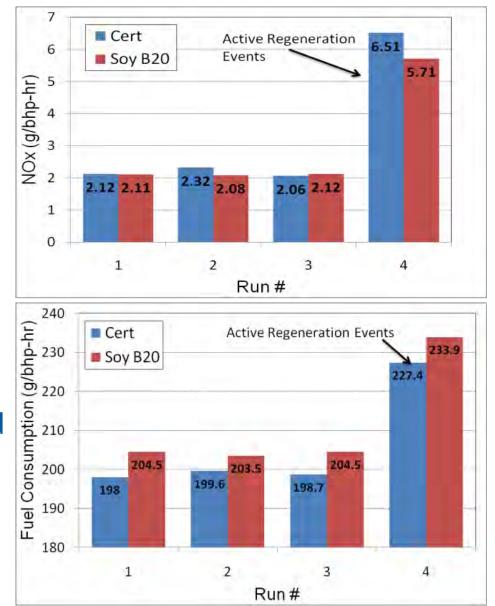




# **Experimental Approach**

- Emission testing conducted with nine different fuels
- Testing conducted over the Heavy Duty Diesel Transient test cycle
- Measurement of NOx, CO, THC, PM and fuel consumption

| Test Fuels                 | Cetane # | Aromatics (%) |
|----------------------------|----------|---------------|
| ULSD (certification)       | 43.6     | 32.8          |
| ULSD (local pump)          | 51.3     | 24.4          |
| ULSD (low aromatic)        | 51.2     | 9.4           |
| ULSD (high aromatic)       | 43.9     | 36.7          |
| B20 (soy + cert)           | 49.7     | 26.2          |
| B20 (tallow + cert)        | 50.1     | 26.2          |
| B20 (yellow grease + cert) | 47.5     | 26.2          |
| B20 (camelina + cert)      | 47.9     | 26.2          |
| B20 (algae + cert)         | 48.4     | 26.2          |

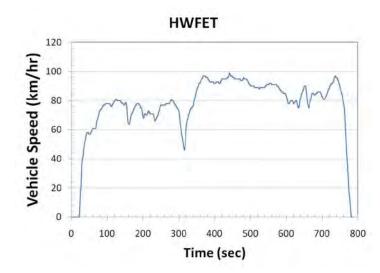
#### **Emission and Fuel Consumption Results**



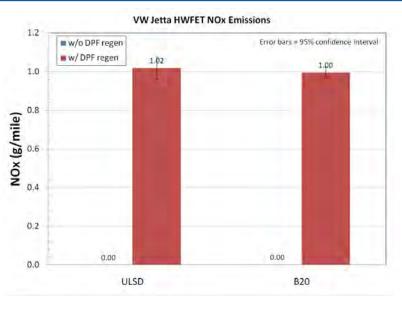


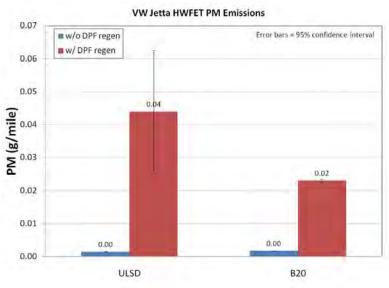

- International B20 NOx emissions fall within variability seen for petroleum diesels
- Cummins B20 NOx emissions ~2% higher
- Fuel consumption ~2% higher for B20 on both engines
- DOC+DPF reduces tailpipe emissions of CO, THC and PM to extremely low levels
- Impact of B20 on tailpipe CO, THC and PM cannot be measured

## **DPF Regeneration Event – International Engine**

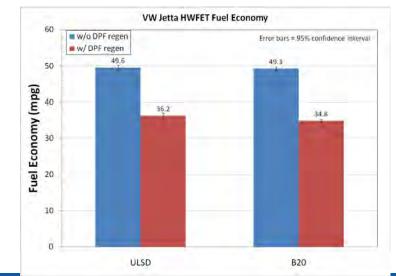

- Soot stored on DPF must be burned off about every 500 miles
- Regeneration created ~300% increase in NOx and ~15% increase in fuel consumption
- Biodiesel results in slower soot loading for a DPF
- Thus, DPF may regenerate less often with biodiesel
- Potential for NOx reduction and increased fuel economy with biodiesel



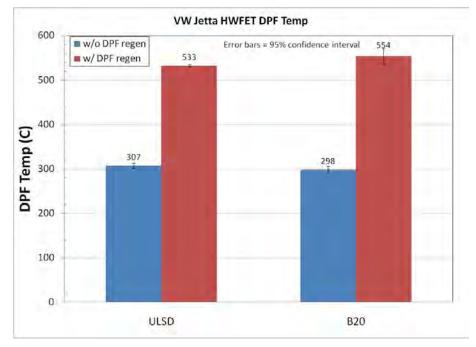

## **Biodiesel Tested in a 2010 VW Jetta**


- 2010 VW Jetta 2.0L TDI, DOC+DPF+LNT, Tier II Bin 5
- Emission testing conducted with ULSD and soy B20
- Measurement of NOx, CO, THC, PM and fuel consumption
- Testing conducted over the Highway Fuel Economy Test (HWFET) cycle
- Three hot-start repeats of HWFET with each fuel
- Investigation of DPF regeneration event
- Three hot-start repeats of HWFET during a forced DPF regen event
- DPF was pre-loaded with 7.8 grams of soot prior to each regen event



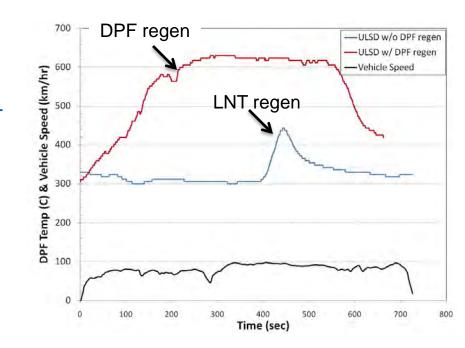



## VW Jetta – Emissions and Fuel Economy Results






- No difference in NOx or PM for B20
- DPF regeneration event creates dramatic increase in NOx emissions
- PM slip seen during DPF regeneration event
- B20 had no impact on fuel economy compared to ULSD under normal operation
- 27% lower fuel economy during regeneration event with ULSD
- 29% lower fuel economy during regeneration event with B20




## **VW Jetta – Regeneration Event**



- Soot load with ULSD 3.7 g/hr over HWFET
- Regeneration frequency approximately 200 miles with ULSD over HWFET
- Soot load rate and regen frequency still unknown with B20

- B20 resulted in slightly lower DPF temperatures during normal operation
- B20 resulted in slightly higher DPF temperatures during regen operation



## **Proposed Future Work**

- Continue work to fully quantify the impact of regeneration events on emissions and fuel economy
- Additional dynamometer testing will measure the impact of biodiesel on lube-oil dilution during regeneration events
- Measure the impact of biodiesel on full useful life durability of emission control system
- Measure the impact of other advanced biofuels, including hydrocarbon biomass-based diesel fuels, on emissions and fuel consumption in modern diesel engines

# **Summary**

- Biodiesel's impact on NOx emissions is still difficult to define in modern diesel engines
- Biodiesel's impact on THC, CO and PM can no longer be seen in DPF-equipped engines
- Biodiesel showed ~2% increase in fuel consumption in HD engines
- Biodiesel showed no change in fuel consumption in LD vehicles
- DPF regeneration events have dramatic impact on NOx and fuel consumption
- Biodiesel's impact on DPF regeneration events still needs to be fully quantified