Low Cost Carbon Fiber Overview

9 May 2011

C. David (Dave) Warren Field Technical Manager Transportation Materials Research

Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV

This presentation does not contain any proprietary, confidential or otherwise restricted information.

LM002

LM002

Materials

Vehicle Technologies Budget

Task	FY 2010 Budget	Industry Cost Share	FY 2011 Budget	Industry Cost Share
Precursors	\$1,725,000	\$688,000	\$1,850,000	\$1,136,000
Commercialization of Textile Precursors				
Precursor & Fiber Evaluation				
Polyolefin Precursors				
Lignin Based Precursors				
PAN-MA Precursors *				
Conversion	\$1,815,000	\$61,500	\$2,929,000	\$115,000
Advanced Oxidation				
Conventional Interfacial Adhesion				
Pilot Line Upgrade				

* - \$150K of which from H_2 Storage

Barriers

- Carbon Fiber Cost is Too High for Automotive Applications
- Carbon Fiber Supply to Too Limited for the Automotive Industry
- Property Translation is Immature for CF in Automotive Resins

LM002

Materials

Other Coordinated Activities

Other Related Projects	Funding Agency	Total Budget	Industry Partner	Industry Cost Share
Precursors				
Polyolefin Constituent Precursors	DOE/IT	\$2,000,000	CRADA	\$6,000,000
Graphite electrodes for Arc Furnaces	DOE/IT	٦	CRADA	-
Nanoporous CF for Supercapacitors - Lignin	DOE/IT	\$2,300,000	CRADA	- \$380,000
Composite Filters for HVAC Systems - Lignin	DOE/IT	J	CRADA	J
Filters for HVAC – CO2 & VOC Capture - Lignin	DOE/EERE T2	\$450,000	CRADA	\$450,000
Advanced Structural Fibers	DARPA	\$8,000,000	NO	\$0
Melt Spinnable PAN for H2 Storage	DOE/FCT	\$1,300,000	NO	\$0
Conversion				
Carbon Fiber Technology Center	ARRA	\$34,700,000	NO*	N/A
Microwave Assisted Plasma Carbonization	DOE/IT	\$3,000,000	CRADA	**
Carbon Fiber Test Standards	IEA	TBD	Agreement	TBD

IT – DOE Industrial Technologies Program IEA – International Energy Agency * - Enables multiple partnerships

** - Cost Share Part of Polyolefin Project

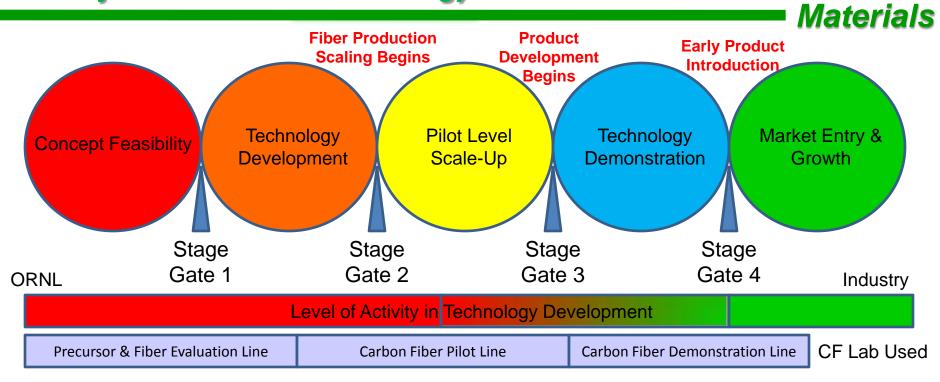
Agreement – 26 Country collaborative agreement

LM002

Materials

Partnerships

Task	Task Lead	Partners	
Precursors			
Commercialization of Textile Precursors	Dave Warren	FISIPE, S.A., SGL Carbon Fibers?	
Precursor & Fiber Evaluation	Robert Norris	IZUMI International	
Polyolefin Precursors	Amit Naskar	Proprietary	
Lignin Based Precursors	Fred Baker	Lignol Innovations, Kruger-Wayagamack, Innventia, Georgia Tech	
PAN-MA Precursors	Felix Paulauskas/ Pol Grappe	FISIPE, S.A.	
Conversion			
Advanced Oxidation	Felix Paulauskas	SENTECH	
Conventional Interfacial Adhesion	Soydan Ozcan	Magna, FISIPE, Zoltek, Continental Structural Composite, Michelman [®] , SENTECH, AOC, Plasticom	
Pilot Line Upgrade	Robert Norris	N/A	


LM002 Materials

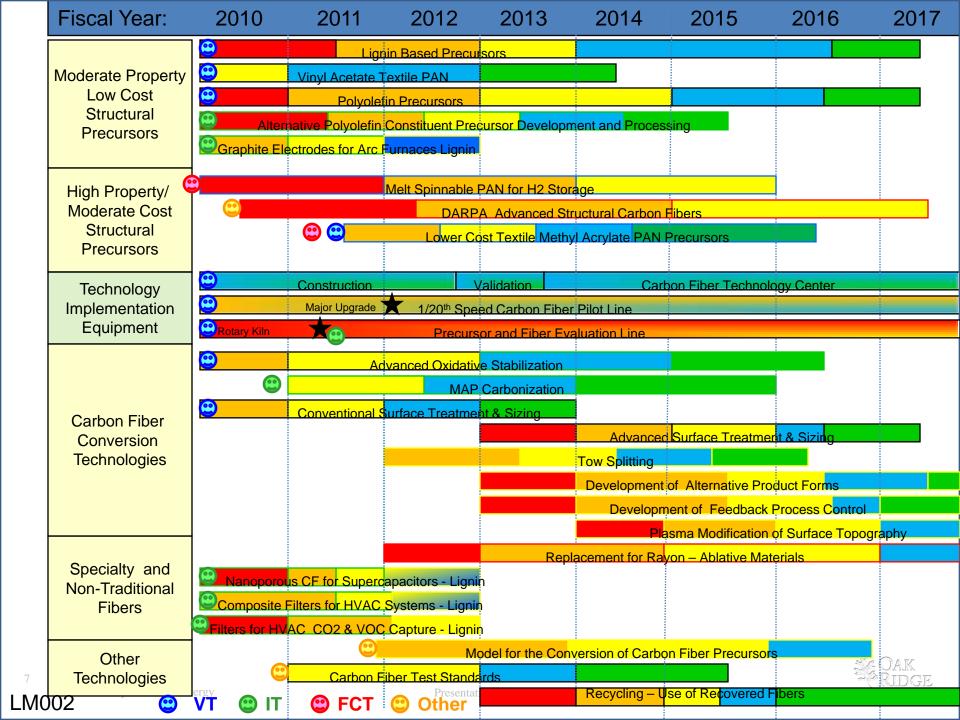
Future Research Efforts

Task	Target Start	Goals
Precursors		
Rayon Replacement – Ablative Materials	FY 2012-2013	Substitute for Rayon
Conversion		
Advanced Surface Treatment & Sizing	FY 2013	Non-Standard Surface Treatment
Development of Feedback Process Control	FY 2013	Improved Economics via Monitoring and Correcting Conversion Parameters
Plasma Modification of Surface Topography	FY 2014	Mechanical Interlocking of Fiber to Resin
Model for the Conversion of Carbon Fiber	FY 2011-2012	Understand and thus improve Oxidation Kinetics
Non-Conversion Processing		
Tow Splitting	FY 2012	Cost Savings – Process Large Tows, Use as Small Tows
Development of Alternative Product Forms	FY 2013	Product Forms Amenable to High Volume Industries – Not Spooling
Applications for Recovered Carbon Fiber	FY 2013-2014	Carbon Fiber Recycling that makes sense

Process for Carbon Fiber Technology Commercialization

- Demonstrate technical feasibility
 Demonstrate likely cost effectiveness
 Bench scale
 Small material volume
 Batch processes
 Concludos with
- Concludes with design of issue resolution plan
- Demonstrate technology works
 Demonstrate cost effectiveness if scaled
 Bench scale
 Small material volume
 Batch processes transitioning to continuous
 Concludes with design of prototype

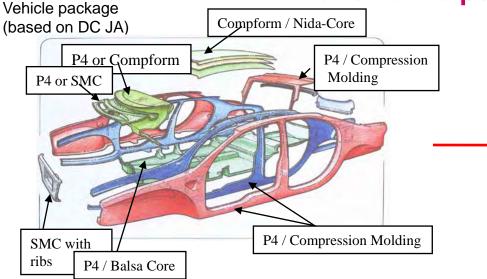
unit or materials


- Resolve continuous operation issues
 Develop continuous operation capability for short time periods
 Moderate material volume increasing as issues are resolved
 Concludes with design of continuous unit or final material selection
- Work to resolve scale –up equipment issues
- •Develop multi-tow continuous operation capability for long periods of time
- Material volumes for product design and development
- Concludes with industrial adoption

- Industry adoption
- Product
- development
- •Customer base development

LM002

Process for Carbon Fiber Technology Commercialization


LM002

	Transition from Concept Proof	Transition from Technology	Transition from Pilot Level Scale-	Transition from Technology
Technology Task	to Technology Development	Development to Pilot Scale-up		Demonstration to Commercialization
Lignin Based	Demonstrate 150KSI/15MSI	Demonstrate 250KSI/25MSI	Demonstrate Continuous	Demonstrate Reliable Continous
Precursors	(9/2010)	(9/2012)	Processing (9/2013)	Conversion (3/2016)
	Demonstrate 150KSI/15MSI	Demonstrate 250KSI/25MSI	Demonstrate Continuous	Demonstrate Reliable Continous
Textile PAN	(8/2007)	(8/2008)	Processing (9/2010)	Conversion (9/2012)
	Demonstrate 150KSI/15MSI	Demonstrate 250KSI/25MSI	Demonstrate Continuous	Demonstrate Reliable Continous
Polyolefin Precursors	(9/2010)	(9/2012)	Processing (9/2014)	Conversion (3/2016)
Melt Spun PAN of	Demonstrate Convertible			
	Precursors (9/2011)			
Guscous storage				
Lower Cost PAN-MA	Demonstrate 300KSI/25MSI	Demonstrate 650KSI/35MSI	Demonstrate Continous	Demonstrate Reliable Continous
for Gaseous Storage	(6/2012)	(9/2013)	Processing (9/2014)	Conversion (3/2016)
	Demonstrate Sufficient		Demonstrate Continuous	
	Oxidation and Stabilization	Demonstrate Conversion meeting	Operation - Build Pilot Unit	Demonstrate RealiabilitY - Build Pre-
Advanced Oxidation	(9/2009)	250KSI/25MSI (9/2010)	(9/2012)	Production Unit (9/2014)
	Demonstrate Sufficient	Demonstrat Conversion meeting	Demonstrate Continous Operation - Build Pilot Unit	Demonstrate Realiability - Build Pre-
	Carbonization (3/2005)	250KSI/25MSI (9/2007)	(9/2012)	Production Unit (9/2014)
		250101/251101 (5/2007)	(3/2012)	(5) 2014)
			Demonstrate 14 KSI SBSS	Incorporate in Demonstration
Surface Treatment	Not Applicable	Demonstrate 11KSI SBSS (9/2010)	(9/2011)	Projects with Industry (3/2013)
Carbon Fiber Test			Develop Test Methods and	
Standards	Not Applicable	Not Applicable	Preliminary Standards (9/2013)	Validate Standards (3/2014)
Recycling of Carbon	Prove quality fibers can be	Prove recycling process is scalable	Develop pilot level recycling	Design and develop a Pre-production
Fiber	recovered (9/2013)	(9/2014)	unit(s) (3/2015)	scale recycling unit (9/2015)

Materials

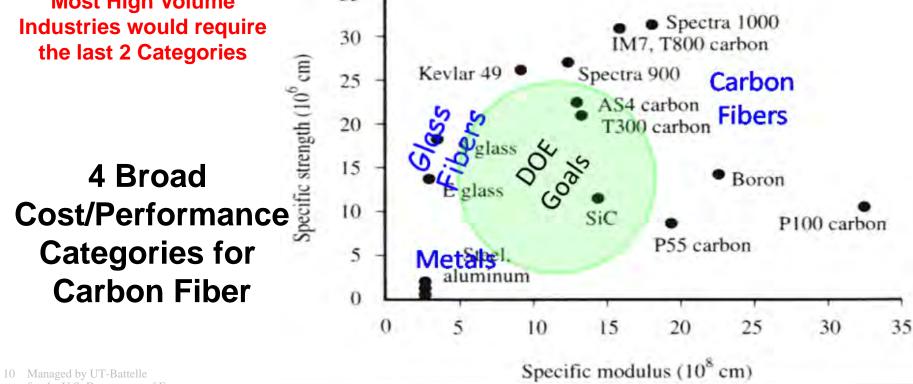
A 10% mass reduction translates to a 6-7% increase in fuel economy or may be used to offset the increased weight and cost per unit of power of alternative powertrains

Program Minimum: Strength: \geq 250 Ksi Modulus: \geq 25 Msi Strain: > 1%

Phase 1 Results:

67% mass savings over baseline Bending stiffness exceeded 20% Torsional stiffness exceeded 140% Durability and abuse load cases satisfied Manufacturing strategy developed Vehicle Materials GOALS \$5 - \$7 Per Pound (FY2009 Dollars)

Cost Performance Categories


 Materials

 High Performance >750 KSI (>35 MSI)
 Cost is not Limiting, Performance Driven

 Moderate Grade
 500 – 750 KSI (30-35 MSI)
 Cost and Performance Balance

 High Volume Grade 250 – 500 KSI (< 30 MSI)</td>
 Cost Sensitive, Performance Enabling

 Non Structural
 Chemical & Physical Prop.
 Usually Low Cost and Unique Needs

for the U.S. Department of Energy

Graph provided courtesy of Jose Zayas, Wind Energy Program Manager, SNL

LM002

Potential Markets and Needs

LM0	02
-----	----

🙄 250-500 KSI, 25 MSI Fiber	🙂 500 - 750 KSI, 35 - 40 MSI Fiber
-----------------------------	------------------------------------

Industry	Benefit	Applications	Drivers	Obstacles	Current Market	Potential Market
Automotive	Mass Reduction: 10% Mass Savings translates to 6-7% Fuel Reduction	Throughout Body and Chassis			< 1M lbs/yr	> 1B lbs/year
Wind Energy	Enables Longer Blade Designs and More Efficient Blade Designs	Blades and Turbine Components that must be mounted on top of the towers	Tensile Modulus; Tensile Strength to reduce blade deflection	Cost and Fiber Availability; Compression Strength; Fiber Format & Manufacturing Methods	1-10 M Ibs/yr	100M - 1B lbs/yr
Oil & Gas	Deep Water Production Enabler	Pipes, Drill Shafts, Off-Shore Structures	Low Mass, High Strength, High Stiffness, Corrosion Resistant	Cost and Fiber Availability; Manufacturing Methods	< 1M lbs/yr	10 - 100M Ibs/yr
Electrical Storage and Transmission	Reliability & Energy Storage	Low Mass, Zero CTE transmission cables; Flywheels for Energy Storage	Zero Coeficient of Thermal Expansion; Low Mass; High Strength	Cost; Cable Designs; High Volume Manufacturing Processes; Resin Compatibility	< 1M lbs/yr	10-100M lbs/yr
Pressure Vessels for the U.S. Departm	Affordable Storage	Hydrogen Storage, Natural Gas Storage	High Strength; Light	Cost; Consistent Mechanical Properties	< 1M lbs/yr	1-10B bs/yr National Laborator

Potential Markets and Needs (Continued)

LM002

		te	ri	a	ls
ニット	\sim	r			

250 -	500 KSI, 25 M	SI Fiber	() 500 - 75	0 KSI, 35 - 40 MS	SI Fiber	
Industry	Benefit	Applications	Drivers	Obstacles	Current Market	Potential Market
Infrastructure	Bridge Design, Bridge Retrofit, Seismic Retrofit, Rapid Build, Hardening against Terrorist Threats	Retrofit and Repair of Aging Bridges and Columns; Pretensioning Cables; Pre- Manufactured Sections; Non- Corrosive Rebar	Tensile Strength & Stiffness; Non- Corrosive; Lightweight; Can be "Pre-Manufactured"	Cost; Fiber Availability; Design Methods; Design Standards; Product Form; Non-Epoxy Resin Compatibility	1-10M Ibs/yr	1-100B Ibs/yr
Non-Aerospace Defense	Lightweight Ground and Sea Systems; Improved Mobility and Deployability	Ship Structures; Support Equipment; Tanks; Helicopters	Low Mass; High Strength; High Stiffness	Cost; Fiber Availability; Fire Resistance; Design into Armor	1-10M Ibs/yr	10-100M Ibs/yr
Electronics	EMI Shielding	Consumer Electronics	Low Mass; Electical Conductivity	Cost; Availability	1-10M lbs/yr	10-100M lbs/yr
Aerospace	Secondary Structures	Fairings; seat structures; luggage racks; galley equipment	High Modulus; Low Mass	Cost of lower performance grades; Non-Epoxy Resin Compatibility	1-10M lbs/yr	10-100M Ibs/yr
Non-Traditional Energy Applications	Enabler for Geothermal and Ocean Thermal Energy Conversion	Structural Design Members; Thermal Management, Energy Storage	Tensile Strength & Stiffness; Non- Corrosive; Lightweight	Design Concepts; Manufacturing Methods; Fiber Cost; Fiber Availability	1-10M lbs/yr	10M-1B lbs/yr
Electircal Energy Storage	Key Storage Media	Li-Ion Batteries; Super-capacitors	Electrical and Chemical Properties	Design Concepts; Fiber Cost and Availability	1-5M lbs/yr న	10-50M ⊘ີ Ibs/yr
for the U.S. Depar	attelle ment of Energy	Pre	sentation_name		11-70M ੈ Ibs/yr	3-114B Ibs/yr

Low Cost Carbon Fiber: Common Issues and Needs

LM002

Materials

Civil Infrastructure Rapid Repair and Installation, Time and Cost Savings

Bio-Mass Materials Alternative Revenue Waste Minimization

Courtesy Umeco

Non-Aerospace Defense Light Weight, **Higher Mobility**

Energy Storage

Flywheels, Li-Ion Batteries,

Supercapacitors

Secondary Structures

Aerospace

Flectronics Light Weight, **EMI Shielding**

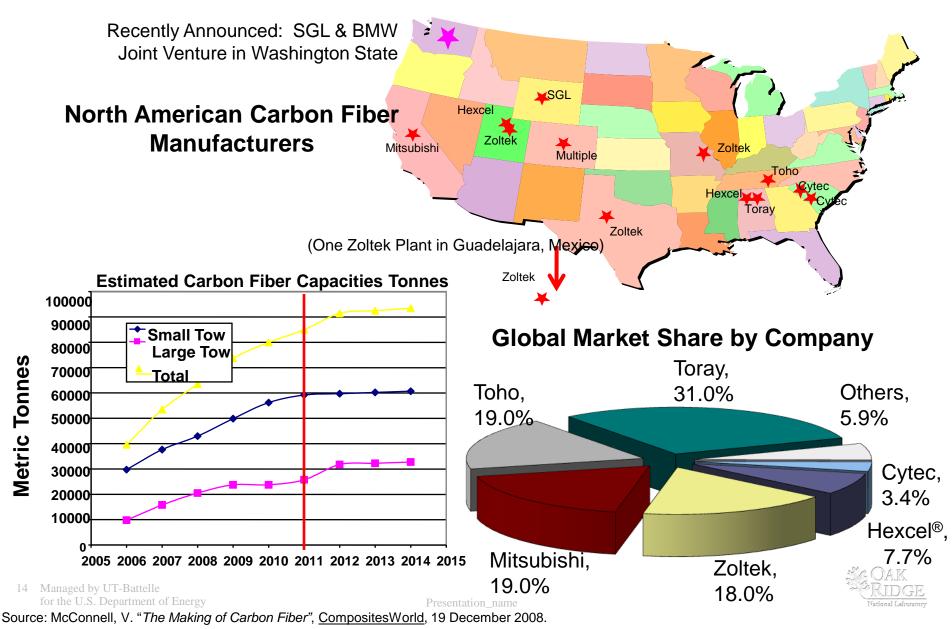
Common Issues: Fiber Cost **Fiber Availability Design Methods Manufacturing Methods Product Forms**

Power Transmission Less Bulky Structures **Zero CLTE**

Oil and Gas **Offshore Structual Components**

Vehicle Technologies Necessary for 50+% **Mass Reduction**

Wind Energy **Needed for Longer Blade Designs**


Courtesy Umeco

Courtesy Beacon Power Pressurized **Gas Storage Only Material** With Sufficient

Strength/Weight

Domestic Carbon Fiber Production & Comparison

LM002

Global Carbon Fiber Production

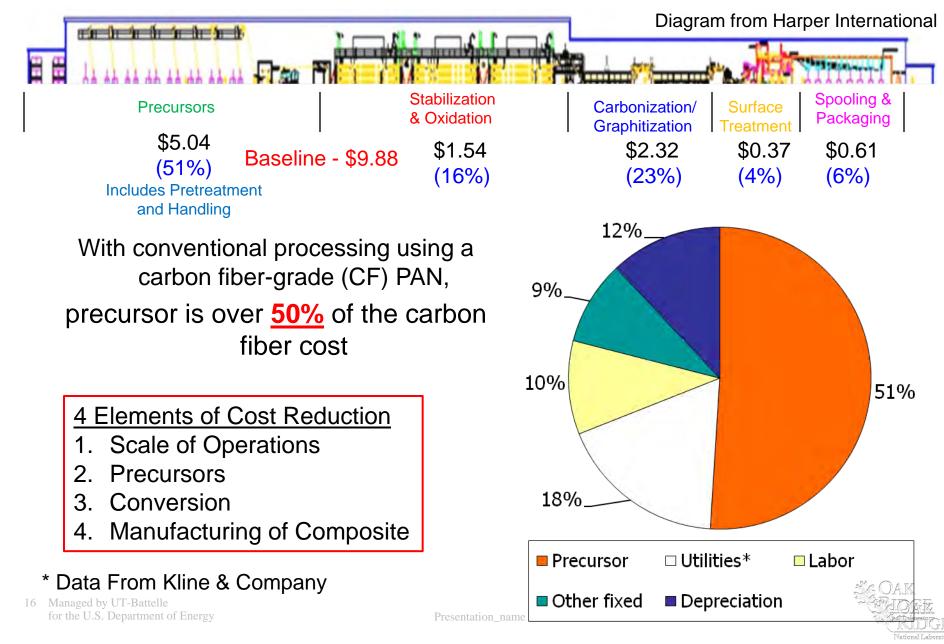
15

Global Carbon Fiber Production

LM002

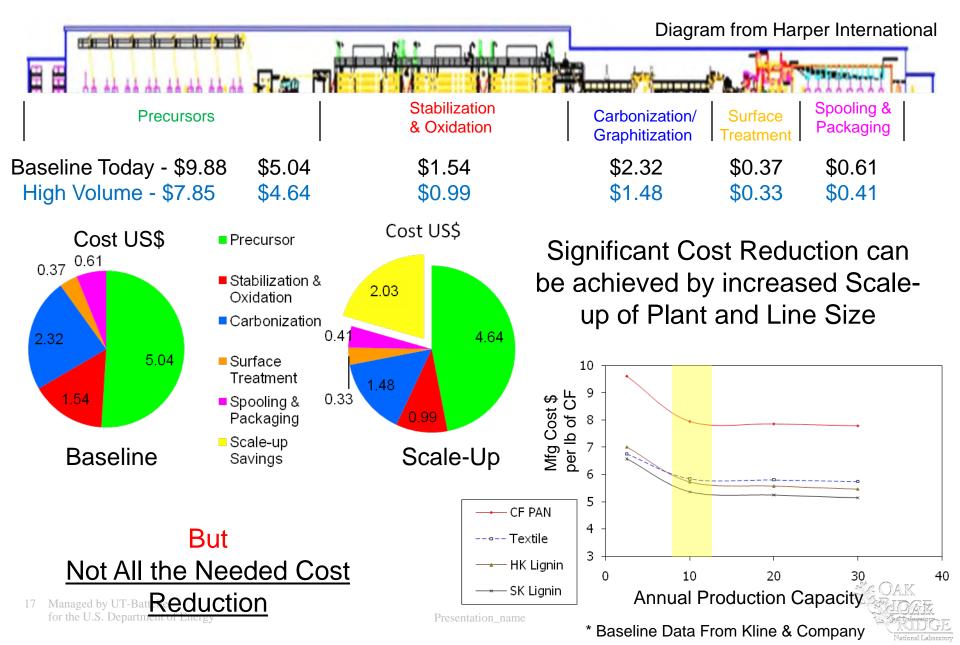
Materials

Not included is a 40,000,000 lb/year Chinese plant to come on-line after 2010 and a major Russian Plant being built.


*Small Tow is \leq 24,000 filaments. Large Tow is > 24,000 filaments.

			Small Tow*	Large Tow*	Total
			Production,	Production,	Production,
Company	Headquarters	Manufacturing Sites	lbs/year	lbs/year	lbs/year
AKSA	Turkey	Turkey	4,000,000		4,000,000
Cytec	US – SC	US-SC	5,000,000		5,000,000
Dalian Xingke	China	China	1,320,000		1,320,000
Grafil - Mitsubishi	US – CA	US - CA	4,400,000		4,400,000
Hexcel®	US – UT	US - UT, AL	16,000,000		16,000,000
Kemrock [®]	India	INDIA	1,430,000		1,430,000
Mitsubishi - Rayon	Japan	Japan, US-CA	13,530,000	6,000,000	19,530,000
SGL	Germany	Germany, UK, US-WY		14,300,000	14,300,000
SGL Automotive CF	US – WA	US-WA		3,307,000	3,307,000
Toho	Japan	Japan, US-TN	29,620,000		29,620,000
Тогау	Japan	Japan, US-AL	39,440,000	660,000	40,100,000
Yingyou	China	China	484,000		484,000
Zoltek	US-Mo	US -UT, TX, MO, Mexico		19,300,000	19,300,000
Total		Presentation name	115,224,000	43,567,000	158,79 1,000 j

Source: McConnell, V. "The Making of Carbon Fiber", CompositesWorld, 19 December 2008. & BMW Press Release July 2010.


Carbon Fiber Costs (Baseline)

LM002

Carbon Fiber Costs (1. Scale of Operations)

LM002 Materials

Carbon Fiber Costs (2. Precursors)

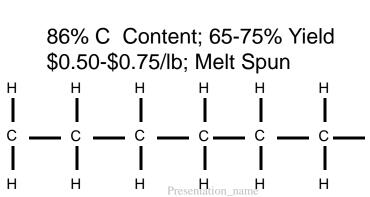
Materials

More Affordable Precursors are Needed

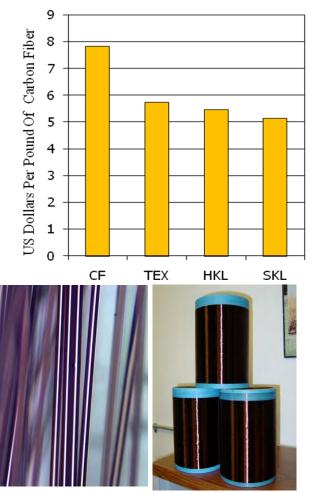
3 Current Precursor Options

- 1. Textile Grade PAN (MA or VA formulations)
- 2. Lignin Based Precursor (Hardwood or Softwood)
- 3. Polyolefins (not shown on chart)

$\begin{array}{c} 600\\ \textbf{(s)}\\ \textbf$

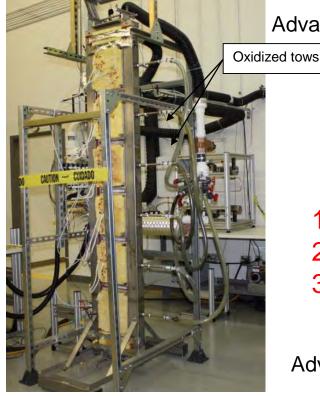

Carbonized Textile Precursor

Current Carbonized <u>Textile Properties:</u> Strength: 540 KSI Modulus: 38 MSI


POLYOLEFINS

18

Alternative Precursors and Conventional Processing



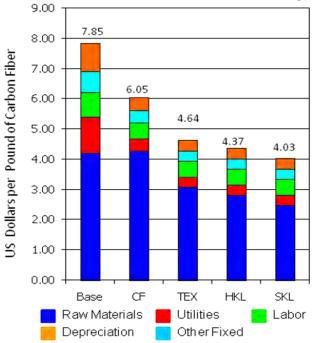
Processed Precursor Fibers from a Hardwood/Softwood Lignin Blend.

Current Research (3. Conversion)

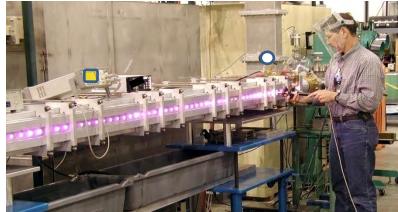
LM002

Materials

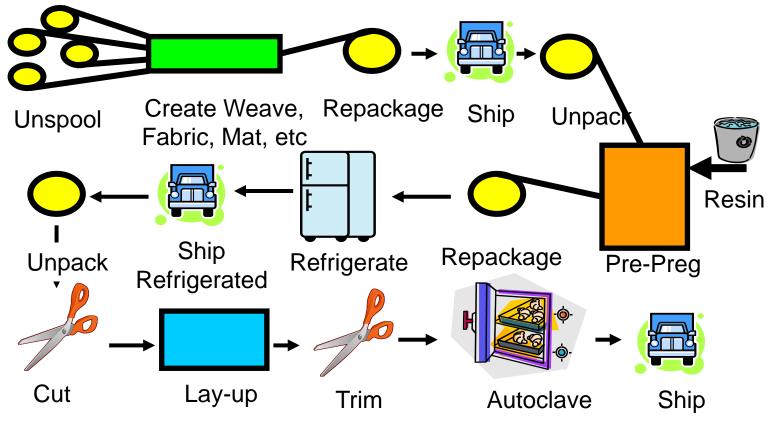
Advanced Oxidation Module


Alternative Processing Methods Under Development

- 1. Oxidative Stabilization
- 2. MAP Carbonization
- 3. Surface Treatment (Not on graph)


Advanced Surface Treatment

Alternative Processing

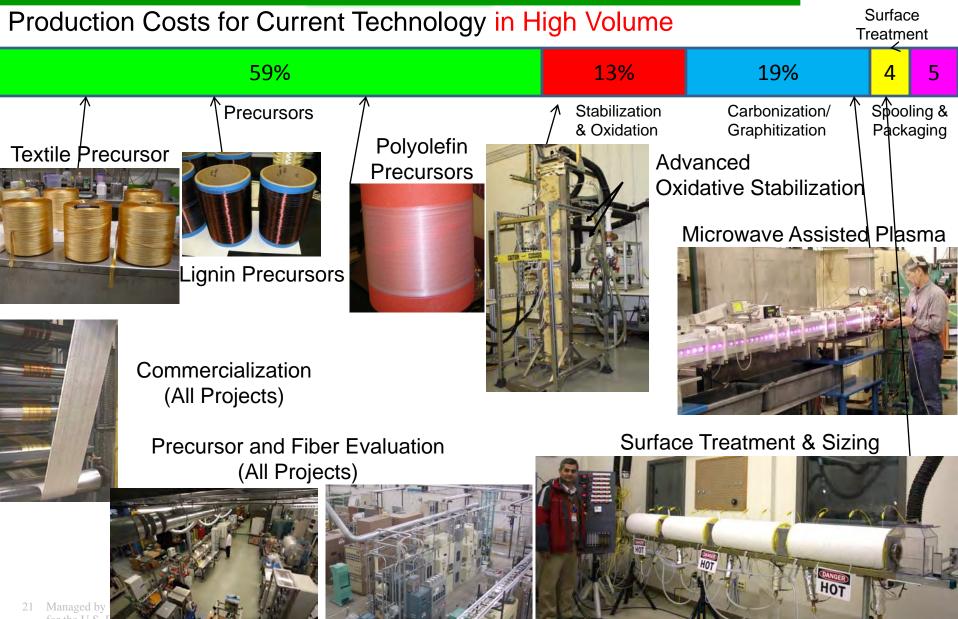

MAP Carbonization/Graphitization Unit

LM002

Materials

Composite Down Stream Processing

System designed for Epoxy based, Aerospace parts


Japanese and German automakers and carbon fiber companies are vertically integrating this process.

 20 Managed by UT-Battelle
 0 Managed hoy US-Danamenent of Energy for the U.S. Department of Energy

Presentation_name

Carbon Fiber Portfolio (Current)

LM002

Comparison of Impact – Moderate Performance Fibers

Comparison of Technologies	Energy kBTU/lb	CO2 Emitted /lb of CF	Plant Cost \$/lb CF	Operating Cost \$/lb CF	Precursor Cost \$/lb CF	Total Mfg Cost \$/lb CF	Best Properties Achieved
Conventional Precursors (CC)	389	49.2	8.72	2.71	4.02	7.85	Baseline
Conventional Precursors (AC)	272	34.4	4.28	1.34	4.02	6.05	Baseline
Textile PAN – VA (CC)	389	49.2	5.56	2.06	2.90	5.74	Exceeds 450 KSI
Textile PAN-VA (AC)	272	34.4	3.57	1.20	2.90	4.64	Exceeds 450 KSI
Melt-Spun PAN (CC)			18.04	3.36	1.62	7.91	400-600 KSI
Melt-Spun PAN (AC)	138	19.4			1.62	6.11	Should match Conventional
Polyolefins (CC)	167	22.6			~1.00	< 4.00	200-400 KSI

Managed by UT-Battelle for the U.S. Department of Energy

Polyolefins (AC)

96

13.4

CC – Conventional Conversion

Should be

Comparable

< 3.00

~1.00

AC – Advanced Conversion

Carbon Fiber Technology Center

LM002

- North America's most comprehensive carbon fiber material and process development capabilities
- Development of carbon fiber technology for energy and national security applications
- Low-cost and high-performance fibers
- Fast, energy efficient processing
- Capability to evaluate micrograms and produce up to 25 tonnes/year
- Produce fibers for material and process evaluations by composite manufacturers
- Train and educate workers
- •3 Grow partnerships with US industry for the U.S. Department of Energy

Conventional **Conversion Line** Adv Technology **Conversion Line** Melt Spin Line

Facility and equipment perspective.

National Laboratory

Presentation_name

Significant Awards and Presentations

LM002 Materials

Significant Recognitions:

- Gordon Battelle award for the Carbon Fiber Team
- AMTEC Award from DOT for Roane State Community College
- Baker named fellow of the Royal Society of Chemistry (FRSC)

Conference Keynote and Plenary Presentations:

- Warren: Keynote 2010 Structural Composites Conference in Birmingham, AL.
- Warren: Keynote <u>2010 Global Outlook for Carbon Fiber</u> in Valencia, Spain.
- Warren: Workshop Seminar <u>10th Lightweight Materials for Defense</u>, Washington, DC.
- Warren: Keynote 2011 Carbon Fiber Future Directions in Geelong, Australia
- Naskar: Keynote <u>Exclusive Case Study: Developing Low Cost Carbon Fiber</u>, Detroit, MI.
- Norris: Invited <u>Carbon Fibers Contributing to a More Energy Conscious and</u> <u>Energy Efficient Future</u>, Denver, CO.
- Baker: Keynote <u>Utilization of Sustainable Resource Materials for Production of</u> <u>Carbon Fiber Materials for Structural and Energy Efficiency</u> <u>Applications</u>, Windsor, Ontario, Canada.
- Baker: Keynote <u>Utilization of Lignin for Production of Carbon Fiber Materials for</u> <u>Structural and Energy Efficiency Applications</u>, Toronto, Ontario, Canada.

24 Managed by UT-Battelle for the U.S. Department of Energy

- "Advancement in the Manufacturing of Textile Grade PAN-Precursors for Low-Cost Carbon Fiber: Morphological Evaluations" Presented at and published in the proceedings of the <u>SAMPE</u> <u>2010</u>, Seattle, WA, 17-20 May, 2010.
- "Review of ORNL's Latest Work on Low-Cost Carbon Fiber Manufacturing Technologies", Presented at and published in the proceedings of <u>13th Annual Global Outlook for Carbon Fibre</u>, Valencia, Spain, 29-30 September 2010.
- "The Need for a Global Standards System in Production of Carbon Fibres" Presented at and published in the proceedings of the <u>2010 SAMPE Fall Technical Conference</u>; Salt Lake City, UT, 11-14 October 2010.
- "Surface Treatment of Carbon Fibers by Continuous Gaseous System", Presented at and published in the proceedings of the <u>2011 SAMPE Conference</u>, Long Beach, CA, 23-26 May 2011.
- "Stress Relaxation Behavior and Mechanical Properties of Functionalized Polymers", ACS National <u>Meeting</u>, Boston, MA.
- "Atypical Hydrogen Uptake on Chemically Activated, Ultramicroporous Carbon," <u>CARBON</u>, 48, pp. 1331-1340, (2010).
- "On the characterization and spinning of an organic-purified lignin towards the manufacture of low-cost carbon fiber," <u>J. Appl. Polymer Sci.</u>; Accepted for publication, 2010.

Chairing Paper Sessions at Conferences:

•Warren: Chaired <u>2010 Carbon Fibre Conference</u> *Applications* Section, Valencia, Spain

•Eberle: Chaired a session at the <u>SAMPE 2010 Composites Conference</u>.

•Baker: Chaired Oral Session on Fibers and Composites at CARBON 2010.

LM002

Significant Awards and Presentations

ID / Patent Inventor Title Last 18 months # 7,727,932 Baker Activated Carbon Fibers and Engineered Forms from Renewable Resources Precursor Compositions and Stabilization Methods for Polyolefin-Based Carbon 2462 Naskar et. al. Fiber Manufacturing Genetically-Modified Lignin-Derived Bio-Thermoplastics for Polymer Matrix 2187 Baker et al. Composites Carbon Nanotube (CNT)-Enhanced Precursor for Carbon Fiber Production and 2051 Baker et al. Method for Making a CNT-Enhanced Continuous Lignin Fiber Paulauskas & 7,649,078 Apparatus and method for stabilization or oxidation of polymeric materials Sherman Paulauskas et. al. 7,786,253 B2 Apparatus and method for oxidation and stabilization of polymeric materials System to Continuously Produce Carbon Fiber via Microwave Assisted Plasma 7,824,495 B1 Paulauskas et. al. Processing Paulauskas, White, 7.534.854 B1 Apparatus and method for oxidation and stabilization of polymeric materials & Sherman Naskar, Paulauskas, 1973 Novel compositions for PAN based carbon fiber precursors Janke, & Eberle 2322 Precursor Materials and Fiber Formation for Ultra High Strength Carbon Fibers Several 2323 Conversion of Ultra High Performance Carbon Fibers Several 2477 Naskar, Paulauskas Microwave Processing of Functionalized Polyolefin Fibers 2476 McCarvill, et al Method of Improving Adhesion of Vinyl Esters and Polyesters to Carbon Fibers Naskar, Janke, Precursor Compositions and Stabilization Methods for Polyolefin-Based Carbon 2462 Fiber Manufacturing Eberle, Paulauskas 2557 Apparatus and process for Surface Treatment of Carbon Fibers Paulauskas, et al Reactive Sizing Agent for Improving Adhesion Between Carbon Fibers and Vinyl Vautard, Ozcan, 2541 Paulauskas **Ester Resins** Improvement of the Interfacial Adhesion in Carbon Fiber - vinly Ester Vautard, Ozcan, RIT 2558 **Paulauskas** Composites by the use of Coupling Agent Managed by UT-Battelle

LM002

The Carbon Fiber Team

Felix Paulauskas

Nidia Gallego

27 **Robert Norris** 27 Managed by UT-Battelle for the U.S. Department of Energy

Amit Naskar

Mohamed Abdallah

Ken Yarborough

Frederick Baker

Cliff Eberle

Ronny Lomax

Soydan Ozcan

Dave Warren

The Carbon Fiber Team

Materials

Brian Eckhart

Pol Grappe

Marcus Hunt

28 Managed by UT-Battelle for the U.S. Department of Energy

Daniel Webb

Tomonori Saito

Kelby Cassity

The entire team contributed to this presentation!!!!

Future Staff

COMPARISON OF CASES - High Volume

LM002

Materials

Program Goals are to Combine Precursor Savings with Advanced Conversion Savings

	CF-GRADE PAN				TEXTILE-GRADE PAN			
Factor	Con. Tech	РО	MAP	PO and MAP	Con. Tech.	РО	MAP	PO and MAP
Capacity, MM lb/yr	24.0	31.0	24.0	31	27.5	31.0	27.5	31.0
Number of lines	14	6	14	6	8	6	8	6
Line speed, Ft/hr	1,064	3,192	1,064	3,192	2.128	3,192	2,128	3,192
Investment, \$ Million	209.4	166.0	174.1	132.5	152.9	144.1	126.0	110.5
Investment, \$ per lb of CF	8.72	5.36	7.23	4.28	5.56	4.66	4.58	3.57
Total Head count	372	320	372	320	300	320	300	320

Con Tech – Conventional Technology

PO – Plasma Oxidation

MAP – Microwave Assisted Plasma

However

Incorporating too many new technologies at once in a new plant design may be too high of a risk.

