Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles

Metal Oxygen Separation Technologies, Inc. (MOxST) P.I. Adam Powell, MOxST CTO Presenter: Steve Derezinski, MOxST CEO DOE Annual Merit Review May 12, 2011 Project ID: LM035

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

- Timeline
 - April 20, 2010 May 19, 2011
 - 98% complete

- Barriers
 - Zirconia (YSZ) robustness
 - Raw material purity
 - Energy budget

- Budget
 - Total: \$843,143
 - DOE: \$843,143
 - FY 10: \$456,983
 - FY 11: \$386,160

- Partners
 - Boston University Prof.
 Uday Pal
 - Oak Ridge National Laboratories

Objectives and Relevance

Magnesium for light-weight vehicles:

- Lowest-density engineering metal Low manufacturing costs
- Excellent stiffness-to-weight
 Good recyclability
- Production at **low cost** with **zero emissions** would improve life-cycle performance and help industry to use magnesium in light-weight vehicles

"The overall goal of this one-year project is to answer key research questions enabling MOxST to assess the feasibility and cost of operating a SOM Electrolysis cell which will produce tens of tons of magnesium per year"

Magnesium Process Approach

- Electrolysis in molten salt at 1150-1300° C
- SOM (YSZ) protects anode from harsh liquid electrolyte bath and separates Mg from O₂
- Argon stirs electrolyte and dilutes Mg vapor
- High current and energy efficiency

MOxST Scale-Up Path

Technical Accomplishments and Progress

- Zirconia (YSZ) robustness: additive for stability, 100-hour electrolysis test, 500hour molten salt exposure test
- Obtained MgO material composition, ran limited tests of impurity removal features
- Completed energy analysis and budget
- Operated at 8" immersion 60 A max current
- Condenser temperature and argon flow control determine liquid condenser success
- FEA modeling and scale-up design

SOM Electrolysis Prior Work

Anode

Electrical

- 1-tube apparatus with failure-critical metalceramic joint
- 40-hour zirconia salt exposure tests
- 3-tube experiments at 3" immersion depth
- 1-tube axisymmetric and 3-D FEA models of electrolysis cell
- Cost model by Sujit Das (ORNL)

Cathode

(Western

Pidgeon

(Western

(China

Pidgeon

G Other

C Labor Energy

Capital Materials

\$0.62

SOM

Molten Salt Additive for YSZ

With additive

No additive

NOTE: All YSZ samples are off-the-shelf tubes

Long-Term Zirconia (YSZ) Tests 100-hour static membrane test

As Received

After 100-hour exposure

✓~50 µm layer after 100 hours

Long-Term Zirconia (YSZ) Tests

• 500-hour salt exposure

✓~100 µm layer after 500 hours

Asymptotic degradation characteristics

100-hour Electrolysis

As Received

After 100-hour Electrolysis

Off-the-shelf Zirconia (YSZ) Stability Summary

- Additive eliminates porous layer in YSZ
- Magnesia-stabilized zirconia (MSZ) stable but low conductivity
- Based on data likely 4,000-8,000 hour YSZ lifetime
- Further optimization of YSZ is possible

Material and Impurity Flows

Inline purification \rightarrow use moderate-purity MgO (*cf.* Bayer process) Only zinc gets into product (few ppm), not a problem for alloys Flux drain and salt feed \rightarrow developing options for salt recycling

Magnesium Oxide Dissociation Energy

Magnesium Energy Budget

		Total 5.5 V	Total 12.1 kWh/kg
	63%		
•	Liquid Ma efficiency: 48-	Dissociation potential 2.27 V	
•	Vapor Efficiency: 58-76%	Disconsistion restantial	
	 Losses via leads, etc. total 2.6-5.9 kWh/kg 	drop 0.75 V	Heat of reaction 8.41 kWh/kg
	$-\Lambda H = 8.4 \text{ kWh/kg}$	- Molten salt IR	
•	Enthalpy budget:	Molten salt O ²⁻ mass transfer 0.56 V	
	– IR losses 2.7-4.2 V		-
	$-\Lambda G$ /nF=2.3 V	Zirconia SOM Tube 1.5 V	Vessel walls 1 86 kWh/kg
•	Free energy budget:	collector 0.21 V	Anode + current _collector 0.92 kWh/kg
•	Operate at 5-6.5 V	Cathode 0.21 V Anode + current	Cathode 0.92 kWh/kg

MOxST Electrolysis Components

Preliminary Design Concept

- Components:
 - Electrolysis crucible
 - Condenser & tank
 - Argon recycling
 - Molten salt removal
 - Cold trap and power supply (not shown)
- Bounding box: 6.5×4.5×3.9 ft.
- Power: 5-6.5V 10kA

MOxST Magnesium Cost stack (comparable plant sizes)

Collaboration with Boston University

- Cell design:
 - Contributed new robust design for SOM tubes eliminating high-temperature seal
- Zirconia robustness
 - Performed half of electrolysis tests
 - Discovered correlation between electrolysis and static exposure to molten salt
 - Performed half of static exposure tests
 - Fundamental current efficiency studies
 - Membrane and product characterization

Proposed Future Work

- Optimize zirconia (YSZ) formulation and process for long-term operation in molten salt
- Design, build and test prototypes in new configuration at larger scale
- Produce metal using prototypes and test composition and suitability for vehicle parts
- Further refine technical, cost, energy, GHG and other emissions modeling
- Begin site selection and development for pilot plant

Summary

- Significant progress on a new low-cost zero-emissions MgO electrolysis process
- Accomplishments and characteristics:
 - YSZ solid electrolyte is robust at high current
 - High-purity magnesium from low cost MgO
 - High current and energy efficiency, opportunity to capture magnesium condenser energy
 - Pure oxygen by-product reduces net cost
 - Projected net cost is the lowest in the industry
- Magnesium for light fuel-efficient vehicles!

Technical Back-Up Slides

Electrolysis Vs. Salt Exposure

Electrolysis and salt exposure lead to nearly identical reaction layers

Energy/Thermo Fundamentals

 Free energy determines voltage needed for reaction to take place

 $\varDelta G = -nFV$

- Reaction kinetics are a function of overvoltage beyond dissociation potential
 - Ohmic resistances in leads, YSZ, molten salt
 - Butler-Volmer overpotentials at cathode and anode interfaces
 - Mass transfer limitation in molten salt
 - High-temperature: ohmic processes dominate

Magnesium Energy Cost

• Each volt = 1 kWh/lb magnesium product

 $1 \text{ V} = 1 \frac{\text{J}}{\text{Coul}} \times \frac{96485 \frac{\text{Coul}}{\text{mol}\,\text{e}^-} \times 2 \frac{\text{mol}\,\text{e}^-}{\text{mol}\,\text{Mg}} \times 454 \frac{\text{g}}{\text{lb}}}{3.6 \times 10^6 \frac{\text{J}}{\text{kWh}} \times 24.3 \frac{\text{g}}{\text{mol}\,\text{Mg}}} = 1.00 \frac{\text{kWh}}{\text{lb}}$

- Therefore: 5-6.5 V = 5-6.5 kWh/lb
- Cost is a strong function of electricity price

 Upstate New York: 2.5-3¢/kWh → 12-20¢/lb
 Massachusetts: 8-10¢/kWh → 40-65¢/lb
- Zero GHG except for MgO production

Mathematical Modeling

- Modeling for process scale-up engineering
- Multi-physics 3-D current/fluids/heat/mass transfer FEA model of liquid electrolyte
 - Added Nernst-Planck electromigration to Elmer open source FEA code
 - Ran simulations on research geometries, scale-up unit cells, full crucible geometry
 - Developing new advanced boundary conditions for transport-limited molten salt electrolysis
- Full process current & heat transfer model

19-Tube Wedge Results

CPU partition Electrical potential Argon

