Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

H.-T. Lin, H. Wang, and A. A. Wereszczak Oak Ridge National Laboratory

Randy Stafford and Douglas Memering Cummins Inc.

2011 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Arlington, VA 11 May 2011

Project ID: PM001

This presentation does not contain any proprietary, confidential, or otherwise restricted information

1 Managed by UT-Battelle for the Department of Energy

Overview

Timeline

- Start Oct 2007
- Finish Sept 2011
- ~ 75% Complete

Budget

- Total project funding
 - DOE \$1,200K
 - 2008 \$300K
 - 2009 \$300K
 - 2010 \$300K
 - **2011 \$300K**
 - Cummins \$1,200K Cost Share

Barriers*

- Changing internal combustion engine combustion regimes
 - ✓ Peak Cylinder Pressure
 - ✓ Fuel Injection Pressure
 - ✓ Fuel Formulations
- Long lead times for materials commercialization

Target

Advanced fuel injection system
 with pressures > 2800 bar
 50% improvement in freight hauling efficiency by 2015.

Partners

- Cummins, Inc.
- EPCOS
- Kinetic Ceramics, Inc.

*Vehicle Technologies Program, Multi-Year Program Plan, 2011-2015

Piezoactuation Enables Precise Rate Shaping and Control of Fuel Injection Timing and Quantity

Piezostack used in a fuel injector

(Kim et al, SAE 2005-01-0911)

3 Managed by UT-Battelle for the Department of Energy

- Spray control of solenoid fuel injectors is limited
- Piezo fuel injector can improve fuel efficiency and reduce NOx emission and noise

Applied voltage: <200V; Frequency: 200Hz; Displacement: 80 µm; Force: 3000N; Temperature: <150°C; Lifetime: 1 million miles

ARIDGE National Laboratory

Objectives

- Generate required mechanical data on PZT piezoceramics under high electric field and high temperature
- Conduct fatigue and dielectric breakdown testing on actuator components using piezodilatometer
- Characterize fatigue responses of PZTs with respect to the application in fuel injection system
- Develop experimental approach to testing mechanical strength of PZT stacks
- Use probability design sensitivity analysis with FEA to identify optimum design of PZT multilayer piezoactuator

Milestones

- Sept 2009: Measure and compare piezoelectric and mechanical reliabilities of tape-cast and pressed PZT piezoceramics.
- Sept 2010: Reliability study on identified PZT piezoceramics in various environments.
- Sept 2011: Testing and lifetime study of identified PZT piezoceramics and stacks.

- Measure and compare mechanical properties of PZT piezoceramics that are candidates for use in piezoactuators.
- Develop accelerated test methods that enable rapid and reliable qualification of piezoactuators.
- Measure response and reliability of piezoactuators and link to measured piezoceramic properties.
- Adapt to fuel injectors for Heavy Duty Diesel engines.

PMLAs have a macroscale and a microscale

PMLAs would
 be used inside
 a fuel injector

Accomplishments

- Ball-on-ring mechanical test facility with electronic liquid bath was developed.
- Electric loading capability has been upgraded to more than 1000 V.
- Mechanical reliability of PZT in electric field serves as input for stack design.

- ✓ KCI PZT mechanical strength and field effect were evaluated in the range of -2E_c to +2E_c.
- No significant effect of electric field was observed except that under -E_c.
- Electronic liquid did not affect the measured mechanical strength.

> Y09 – tests in air; Y10 – tests in electronic liquid FC-40.

Ball-on-ring consisted of 6.35 mm loading ball and 9.5 mm supporting ring.

Loading was controlled by displacement with a rate of 0.01 mm/s.

8 Managed by UT-Battelle for the Department of Energy

- Piezodilatometer was enabled to test and evaluate the fatigue of PZT in high field driving.
- Test procedures and data processing are being standardized.
- Fatigue data help failure analysis of PZT stack and screening candidate PZTs.

- Electric, mechanical, and thermal responses of PZT can be tested under electric loading.
- > Electronic liquid bath is provided.
- Reference specimen is included to study the effect of environment.
- Unipolar & bipolar electric fatigue tests were for KCI PZT completed with 200Hz, 10⁸ cycles; each 4-5 sets.

- Unipolar (left) and bipolar (right) measurements were developed.
- Loops of S(E) and D(E) exhibit various changes in electric fatigue.

- Cycling condition: 200 Hz sine, 2.1/0 kV/mm; FC-40 as medium.
- Unipolar measurement: 0.1
 Hz triangle, 2.1/0
 kV/mm;
- Bipolar measurement: 0.1 Hz triangle, 2.1/-2.1 kV/mm.
- Mechanical strain
 S₃₁ was based on
 LVC transducer.
- Charge density D₃
 was based on modified Sawyer-Tower circuit with 20µF capacitor.

- Unipolar measurement responses depend on cycling modes (unipolar or bipolar).
- ✓ Charge density (Δ D) exhibits a larger variation than mechanical strain (Δ S).
- No trend exists in the variation of reference specimen's responses.

- Variations of amplitudes are used in screening PZTs. ∆S amplitude of strain S(E); ∆D amplitude of charge density D(E).
- Reduced domain contribution due to unipolar cycling was seen in decreased coefficients; renewed domain activity was seen in fluctuated coefficients in bipolar cycling.

- ✓ Piezoelectric and dielectric coefficients (d₃₁ and ε_{33}) were extracted.
- Effect of bipolar cycling on the coefficients is quite appreciable due to the inverse field.
- Unipolar cycling led to decrease in coefficients with some fluctuation in the piezoelectric.

> Variation of d_{31} and ϵ_{31} is part of input to design and system control.

Superscript s designates that coefficients are based on loop secants within defined field ranges.

- Loss tangents were estimated based on the S(E) and D(E) loops.
- Piezoelectric and dielectric loss tangents both are relatively stable within tested cycles.

- Variation of piezoelectric and dielectric loss tangents is also part of input to design and system control.
- Loss tangents are defined in the field ranges same as those in piezoelectric and dielectric coefficients.

- Ball-on-ring mechanical tests were conducted on PZT stacks/plates at different temperatures.
- ✓ 10-layer PZT plates were extracted from EPCOS stacks using chemical procedure.
- Mechanical reliability of PZT plates in target temperature is basic input for stack design.

ational Laborator

Cross head was set at 0.01 mm/s.

14 Managed by UT-Battelle for the Department of Energy

- Fractography on failed 10-layer specimens was conducted using SEM.
- Failure origins are mostly located in the outer PZT layer.
- Failure was dominated by PZT, although failure origins sometimes contained inner electrode.

Tensile surface

- Flexure strength of EPCOS stacks was evaluated using 4-point bend fixture.
- Longitudinal axis was aligned with tensile stress so plate-to-plate or layer-to-layer bonding is tested.
- Interface strength is essential to control delamination failure of PZT stacks.

Purchase	Dimension mm ³	Quantity	Mean (MPa)	Std. Dev. (MPa)
2008	30x3x2.5	6	35.04	1.55
2006	30x7x3.2	2	22.10	-

- Bars were cut out of supplied stacks using thin diamond blades and ground.
- 4-point fixture had inner span 6.35mm and outer span 25.4mm.
- Cross head was set at 0.001 mm/s.

- Plate-to-plate interfaces were obviously a favorite place to stack failure.
- PZT-to-internal electrode interfaces had a higher mechanical strength.
- No failure origin can be identified because no fracture ledge was seen on the failed surface.

Collaborations

Partners

- Cummins: A 3-years ORNL-Cummins CRADA on "Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors" was officially established and executed since Oct. 2008.
- Kinetic Ceramics Inc. and EPCOS: collaborations to systematically manufacture and provide the PZT ceramic specimens and stacks critically needed to understand the effect of material processing and test conditions on the component degradation processes.

> Technology transfer

- CRADA with Cummins Inc. would facilitate the optimization of PZT stacks for HDD fuel injector to achieve 55% engine thermal efficiency by 2018. Also, HDD fuel injector will be designed and mmercialized by Cummins Inc.
- Collaborations with EPCOS and Kinetic Ceramics Inc. would provide key inputs to the PZT material suppliers to optimize the PZT process and stack component design to improve the long-term reliability of PZT actuators.

Summary

- > Mechanical strength of KCI PZT was evaluated in high electric field:
 - ✓ Electric did not influence the flexure strength within the range of -2E_c to 2E_c except the case of -E_c.
 - \checkmark No effect of electronic liquid on flexure strength was observed.
- > Piezoelectric and dielectric properties of KCI PZT were tested:
 - ✓ Unipolar and bipolar measurements have unique feature in PZT characterization, each depending on cycling modes.
 - ✓ No trend exists in variation of reference specimen's responses.
 - Piezoelectric and dielectric coefficients and loss tangents were also extracted.
- > Dielectric strength of EPCOS encapsulating material was studied:
 - Interface between polyester film and electrode played a critical role in local dielectric breakdown, even though the overall strength showed a quite high level.
- Mechanical property of EPCOS PZT stacks was studied:
 - ✓ For 10-layer PZT plates, ball-on-ring tests showed that mechanical strength decreased with increasing temperature.
 - ✓ 4-point bending tests revealed that PZT stack bars usually failed along the plate-to-plate interface.

Future Work

- Develop accelerated tests and database for downselected candidate piezoceramics and PZT stacks of Cummins, Inc.
- Study piezoelectric and mechanical reliability of PZT piezoceramics with emphasis on environmental effects.
- Evaluate accelerated electric fatigue response of PZT multilayer piezoactuator fabricated via tape-cast process.
- Fabricated additional PZT stack fatigue test frame with controlled environment.
- Use probability design sensitivity analysis with FEA to identify optimum design of PZT multilayer piezoactuator.

