Improved Organics for Power Electronics and Electric Motors

A. A. Wereszczak, C. W. Ayers,^{*} R. H. Wiles,^{*} H. Wang, and H. –T. Lin Oak Ridge National Laboratory (ORNL) * National Transportation Research Center (NTRC/ORNL)

2011 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Arlington, VA 11 May 2011

> Project ID #: PM037

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: October 2010
- Project end: September 2013
- Percent complete: 16%

Budget

- Total project funding
 DOE 100%
- FY11: \$250k
- FY12: \$250k
- FY13: \$250k

Barriers*

- Barriers Addressed
 - Reliability and lifetime of power electronic devices (PEDs) degrade rapidly with temperature increase.
 - PEDs need improved thermal management to operate at higher temperatures.
 - New paradigms in cooling would enable achievement of higher power densities without compromise to device reliability.
- Targets:
 - DOE VTP* 2020 target: 105°C Coolant
 - DOE VTP* 2020 target: 4 kW/liter power density

Partners

- NTRC ORNL
- Mossey Creek Enterprises

* VTP Multi-Year Program Plan 2011-2015

Objectives

- Identify and develop lower-cost and better-performing organic compounds for dielectric and thermal management applications in power electronics, electric motors, and film capacitors.
- Reduce volume and improve thermal reliability of power electronics, electric motors, and film capacitors through improved thermal management strategies.

Milestones

- FY11 1: Establish baselines by measuring thermal properties of unused and serviced organic molding compounds from power electronic devices, electric motors, and film capacitors.
- FY11 2: Develop test methods that representatively thermal cycle organics for laboratory tests and subsequent characterization.

Technical Approach

- Harvest *unused* organic dielectric materials from power electronic devices, electric motors, and film capacitors for thermal property testing (thermal diffusivity, thermal conductivity, and heat capacity).
- Harvest used organic dielectric materials from power electronic devices, electric motors, and film capacitors for thermal property testing. Compare with thermal responses of unused materials.
- Develop test fixtures for in-situ thermal property testing.
- Develop organic materials (e.g., epoxy molding compounds) with improved thermal properties, ease of processing, and sustained low cost.

Technical Accomplishments (1 of 3)

- Literature survey (particle size distribution, percolation limit)
- Surveyed candidate ceramic fillers (electrical insulators) having high thermal conductivities.
- Attrition mill undergoing refurbishment
- Molds procured for casting organic or epoxy molded compounds (EMCs)
- Particle size distribution measurement system procured
- Transient finite element model developed for use analyzing thermal conductivity of EMCs
- Electrical resistivity and dielectric breakdown test systems undergoing development

Technical Accomplishments (2 of 3)

Epoxy molding compound with a ceramic filler used in a power electronic module from a hybrid vehicle's inverter

Photo used with permission of Z. Liang (NTRC/ORNL)

Traditional fillers are electrically insulative, have a low thermal conductivity, and are cheap

Particle size distribution and volume fraction solids must be controlled

Managed by UT-Battelle for the Department of Energy

Technical Accomplishments (3 of 3)

Potential ceramic fillers for EMCs

Material	Electrical Resistivity at 25°C (Ω•cm)	Thermal Conductivity at 25°С -к- (W/m•K)	Heat Capacity - Cp - (J/kg•K)	Density -ρ- (kg/m ³)	Coefficient of Thermal Expansion - CTE - (x 10 ⁻⁶ /°C)	Estimated Cost (\$/kg)
Silica silicon dioxide (SiO ₂)	> 10 ¹⁴	2	700	2600	0.5	2
Alumina aluminum oxide (Al ₂ O ₃)	> 10 ¹⁴	30	900	3900	8	5
Magnesia magnesium oxide (MgO)	> 10 ¹⁴	40	900	3600	10	5
Silicon carbide (SiC)	> 10 ¹⁴	120	800	3100	4	40
Aluminum nitride (AlN)	> 10 ¹⁴	250	700	3200	5	400
Beryllia berylium oxide (BeO)	> 10 ¹⁴	280	600	2900	9	800
Epoxy	> 10 ¹²	0.05 - 0.1	1500	1200	30-60	5

Future Work

- Thermally and microstructurally characterize unused and used molding compounds from power electronic devices, electric motors, and film capacitors.
- Model thermal conductivity of EMCs with fillers as a function of volume fraction, particle size distribution, and percolation limit.
- Relate attrition milling conditions to produced particle size distribution.
- Complete electrical resistivity and dielectric breakdown test setups.

Summary

- Identifying and developing lower-cost and better-performing organic compounds for dielectric and thermal management applications in power electronics, electric motors, and film capacitors.
- Comparing epoxy molding compounds (EMCs) of unused and used components through thermal and microstructural characterization.
- Developing new EMCs with high thermal conductivity, that have predictable and simple processing characteristics, and are inexpensive.

