Cummins-ORNL\FEERC Emissions CRADA: NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines

W.P. Partridge (PI), J.-S. Choi, J.A. Pihl Oak Ridge National Laboratory

N. Currier (PI), A. Yezerets, K. Kamasamudram Cummins Inc.

Presenter: Bill Partridge partridgewp@ornl.gov

2012 DOE Vehicle Technologies Program Annual Merit Review May17, 2012, Arlington, Virginia

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

CAK RIDGE NATIONAL LABORATORY

Overview

<u>Timeline</u>

- Start: FY1998
- Major Revisions: 2001, 03, 06, 10
- Current term: 2010-'12 revision
- Current end date: Sept. 2012
- ~80% Complete

<u>Budget</u>

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2010: \$400k
 - FY2011: \$450k
 - FY2012: \$450k

Barriers

- Emissions controls
 - Catalyst fundamentals,
 - Reactions & mechanistic insights
 - Catalyst models (design tools & imbedded)
 - Control strategies & OBD
- Combustion Efficiency
 - Shift emissions tradeoff to fuel efficiency
- Durability
 - Enhanced durability via knowledgebased controls
- Cost
 - Lower catalyst & sensor costs
 - Lower development costs

<u>Partners</u>

- ORNL & Cummins Inc.
- Chalmers Univ. of Technology
- Politecnico di Milano

Objectives & Relevance

- Quantify & correlate transient SCR performance distributions
- Improved methods & tools for enhanced analysis

- Better understanding of how catalyst operating & mechanistic insights
- Improved SS & dynamic catalyst simulations
- Better development tools
- Methods & ideas for improved control (OBD) & catalyst-state assessment
- Better vehicles for consumers:
 - Higher Efficiency: lower engineering margins via better design & control
 - Lower Emissions: better design tools, models, controls & OBD
 - *Improved Durability:* advanced controls for extended catalyst lifetime
 - Lower Cost: Analysis-led design, fewer & lower-\$ sensors, urea utilization

2011 Milestone:

Dynamic analysis of SCR-catalyst performance

- NH₃ capacity distributions

2012 Milestones (on target for Sept. 2012 completion):

- Improve instrumental methods for transient analysis of catalyst state
 - Instantaneous NH₃ coverage & loading rate, instantaneous conversion
- Characterize spatiotemporal performance of Cummins Commercial SCR catalyst (SAPO-34)

Approach for addressing SCR Control Challenges

• Temperature impact on SCR performance

- SCR Zone
- Parasitic NH₃ Oxidation

• NH₃ Capacity Distributions (New Insights!)

- Correlation w/ SCR zone
- Control implications

Hydrothermal Ageing

- Correlations w/ DeGreened results
- Mechanistic implications

• Dynamic & SS NH₃ Inhibition (New Insight for Cu Zeolite catalyst!)

- Location of Dynamic Inhibition
- Mechanistic implications

Technical Progress: <u>Temperature-Induced SCR Shifts</u>

- SCR zone shifts to catalyst front w/ increasing temperature
 - Major internal variations despite same 100% integral conversion
 - High NH₃ levels survive deeper into catalyst at lower T
- Negligible Parasitic NH₃ Oxidation
 - Despite significant NO_x-free NH₃ oxidation
 - i.e., SCR rate greater than O_2 + NH₃ rate

Technical Progress: <u>100% NH₃ Coverage in SCR Zone</u>

- Various components to NH₃ capacity
 - Dynamic (DC): capacity used in SCR
 - Unused (UC) and Total (TC) capacity

- TC = DC + UC

• DC = TC in SCR zone

- Saturated surface NH₃ in SCR zone
- Implies UC=0 in SCR zone
- Corroborated by UC measurements

- DC plateaus after SCR zone
 - Because NH₃ is fully consumed
- DC & UC indicate catalyst use
 - DC/TC: fraction used for SCR
 - UC/TC: unused fraction of catalyst
 - Can use for effluent analysis & catalyst control!

Technical Progress: <u>Hydrothermal Ageing Spreads SCR</u>

- Same integral 100% conversion
- Negligible Parasitic NH₃ oxidation
- TC decreases w/ Hydrothermal Ageing
- Similar NH₃ capacity observation
 - DC=TC in SCR zone

- Slower SCR w/ ageing
 - More catalyst required
 - Consistent w/ active site loss
 - Generally follows TC degradation
 - Suggests SCR dominated by available NH₃ coverage

Technical Progress: <u>Dynamic Inhibition when NH₃ is High</u>

- Dynamic inhibition indicates threshold NH₃ coverage for inhibition onset
 - Conversion inflection indicates SCR slowing w/ continued NH₃ coverage buildup
 - NH₃ coverage continues to grow beyond inflection point
 - Occurs when coverage buildup is fast
 - i.e., when $NH_{3 (gas)}$ concentration is high
 - Observable when at these points (usually within the catalyst)
- Can get to SS inhibited condition w/o passing through dynamic
 - Because low [NO] & slow (low) NH₃ coverage buildup
- Important for catalyst model & controls development
- Need improved temporal resolution of analytical methods

Collaborations & Coordination

• Cummins

- CRADA Partner, Neal Currier (Co-PI)

• Prof. Louise Olsson,

Chalmers

- SCR measurements & analysis (Xavier Auvray)
- Modeling steady state distributed SCR performance (Filipa Coelho)

Prof. Enrico Tronconi & Isabella Nova Politecnico di Milano

- Mechanistic investigation of selected SCR reactions
- Plan for 6-month ORNL visit in CY2012 (Maria Pia Ruggeri)

• CLEERS

- Diagnostics, analysis & modeling coordination
- Prof Milos Marek & Dr. Petr Kočí,

Prague Institute of Chemical Technology

- LNT modeling N₂O chemistry
- KONTAKT II Grant from Czech Republic Government
- Petr to ORNL April 17-20

Dissemination via Publications, Presentations and Patents

- 10 Presentations & 1 Major Award in 2011

Future Work

2012 Work:

- Model instrument response for improved transient analysis
- Characterize spatiotemporal performance of Cummins commercial catalyst
 - NH₃ capacity utilization, Parasitic oxidation, inhibition, transient analysis
- Transient analysis of model & commercial catalyst
 - Evolution & instantaneous SCR conversion, NH₃ coverage (w/ Chalmers)
- Modeling steady state SCR conversion distributions (w/ Chalmers)
- Investigate mechanistic aspects of selected SCR reactions
 - Experimental & numerical, reported to CLEERS (w/ Politecnico di Milano)

2013 Work:

- Impact of conditions on spatiotemporal SCR performance
 - NH₃:NO_x, NO:NO₂, HC
- Extend SS distributed SCR model to include transient performance
- Demonstrate diagnostics for SCR-state characterization
- Correlate control relationships w/ performance parameters
 - Identify strategies for SCR-catalyst control & diagnostics

Summary

- CRADA approach effectively addresses major DOE & Cummins goals
 - Insights for better SCR understanding, models & control
 - Advanced diagnostics to elucidate the same
 - Enabling improved SCR efficiency, cost and durability
- Analytical methods improved to allow transient analysis (DC, TC & UC)
 - Further improvements planned for 2012
- New CRADA insights improve understanding of SCR performance & control
 - NH₃ coverage is saturated over SCR zone
 - DC & UC indicate portion of the catalyst Used & Unused for SCR
 - Dynamic NH₃ inhibition occurs at the catalyst front
 - Due to high NH_{3 (gas)} causing fast NH₃ coverage buildup rate
- Leveraging collaborations to strengthen CRADA & enhance value
 - Modeling distributed steady state SCR performance w/ Chalmers
 - Studying SCR reaction mechanisms w/ Politecnico di Milano (cf. 2011 Review feedback)
 - Improving analytical methods w/ CLEERS
- Future work focuses on:
 - Commercial Cummins SCR catalyst
 - Better transient analysis to elucidate dynamic performance of realistic drive cycles
 - Modeling transient SCR performance
 - Insights & diagnostics to demonstrate and enable advanced control strategies