SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

Engine Systems

DOE Contract: DE-EE0003303

NETL Project Manager: Ralph Nine

Program Investigator: Dennis W. Jadin, Navistar

DOE MERIT REVIEW
WASHINGTON, D.C.
May 17, 2012

National Energy Technology Laboratory Department of Energy

Project ID: ACE059

Outline

- Program Overview
 - Partners
 - **❖** Scope of Work
 - **❖** Barriers and Technology Roadmap
- Technical Approach
 - **❖** Approach criteria
 - **❖**Time line
- Technical Accomplishments
 - Progress to date
 - Combustion, Air Systems, Base Engine, WHR
 - ❖ Fuel Reactivity Engine
- Future Work

Program Overview

Goals and Objectives

Demonstrate 50% improvement in overall freight efficiency of a combination Tractor-Trailer

- 30/50% improvement achieved through tractor/trailer technologies
- 20/50% improvement achieved through Engine technologies

Attain 50% BTE Engine

Demonstrate path towards 55% BTE Engine

Barriers

Achieving 50% freight efficiency while balancing Voice of Customer Needs

Packaging of hybrid drive unit and Waste Heat Recovery Systems

Maintaining tractor weight while adding new systems

Availability of Suitable Battery Technology

Budget

DOE recently approved new budget periods / phases >>>>

 Budget Period
 Start Date
 End Date

 1
 10/01/10
 08/31/12

 2
 09/01/12
 09/30/13

 3
 10/01/13
 06/30/14

 4
 07/01/14
 03/31/15

 5
 04/01/15
 09/30/15

An increased level of resources planned in budget periods 2 & 3 will accommodate project deliverables in periods 4 & 5.

Total Project Funding: DOE \$37,328,933

Prime Contractor \$51,801,146

DOE Funding Received: \$13,393,868

Program Overview

Engine Partnerships

Test Facilities Partners	Phase I	t-11	Phase II	Oct-13	Phase I	II-IV	
Navistar BEHR	Combustion To Emissions Fuel System Head CR	urbocomp	ounding VVA OR	C	Base Engine	50% BTE Demo	
Federal Mogu	Friction Reduc Accessorie		Friction Benc	hmark			
		Testing hmarks SOI-6BTDC Soot	Higher CR capability				
ANL WISCONSIN RESEARCH CONSULTANTS	Engine Des	ign Controls	Fuel Reactivity Testing	Advand Engir Technolo	ne	55% BTE Demo	
AMR 2012							

Barriers (Challenges)

And Technology Roadmap

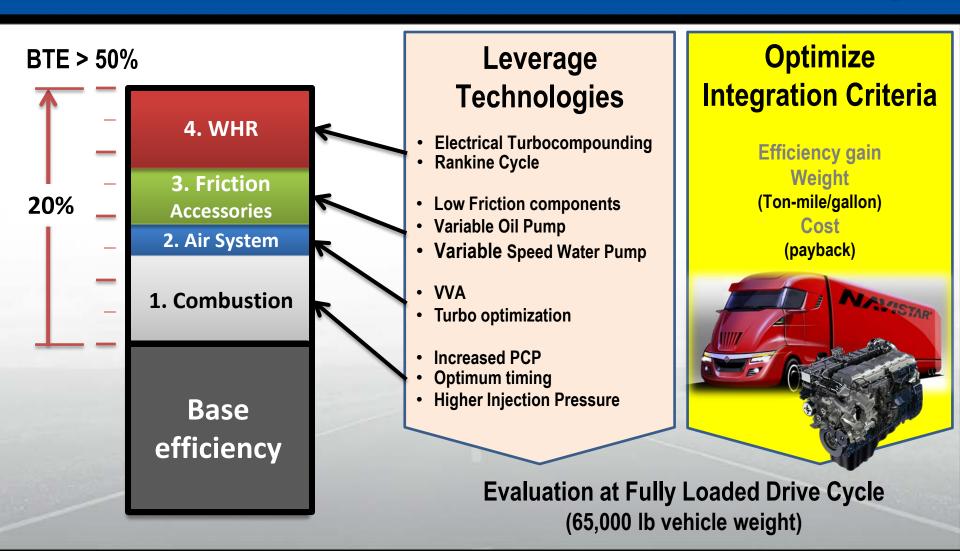
Key: ✓ high confidence to contain

* working on improving solution

System	Barriers (challenges)	Technology Roadmap
Engine & Vehicle	Cost effectiveRobust (controls, durable)Reduced weight	Rely on analysis to select technology Technology to road cycle selection
Engine	 High combustion efficiency with low in-cylinder emissions (NOx, PM) 	Improve Fuel Injection/Air Systems ✓ Advanced Combustion Regimes ★ Reduced friction, advanced accessories ✓
Engine	Modest bottoming cycle efficiencySimplified aftertreatment	Advanced designs Optimum integration to engine Close collaboration with suppliers ✓
Engine	High-efficiency combustion range	Understanding of chemical kinetics ★ Introduce combustion feedback ✓
Engine	 Non optimum fuel formulation 	Introduce reactivity control ✓

Scope of Work

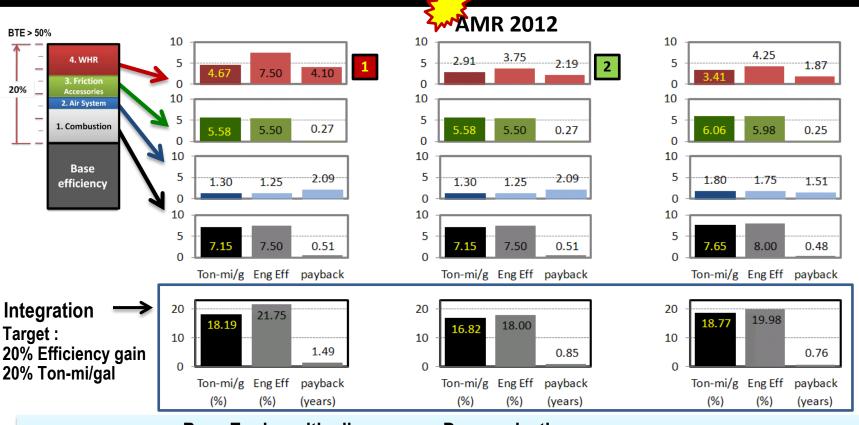
Technology Development and Concept Readiness (Phase II) 1 October 2011 – 30 September 2013


NAVISTA	R
Advanced Technolog	

		completed In	progress
Task	Description		Status
2.1-1	Engine and vehicle model	Integrate engine model to vehicle	50%
		Updating engine mode with ORC	50%
2.1-2	Advanced Diesel Combustion		
	Fuel System to 2900bar with Comb Fbk	Complete	100%
	WHR-TUCO	Complete	100%
	WHR-ORC	Procurement 5/12. Testing 9/12.	20%
	VVA	Procurement 5/12. Testing 6/12	40%
	Aftertreatment	Running NOx reduction cat (0~50%)	70%
	Friction reduction and electrification	Accessories are being benchmarked	60%
	Control System	Platform is built and tested	100%
2.1-3	Fuel Reactivity Engine		
	Lab/Engine/Controls Design and Build	Completed Engine and DAQ install	100%
	Testing	Began combustion characterization	20%
2.5	Concept Readiness		-
	Demo 50%/55% BTF_targets		-

Approach

Selection Criteria Towards 50% BTE



Approach

Advanced Technologies

Optimum Roadmap Towards 50% BTE

2

Approach

Base Engine with all technologies

Concerns:
Longer payback
Complexity from ORC

Down selection

Based on current tests and present projections

WHR limited to Electric Turbocompounding **Down selection**

With next generation hardware upgrade

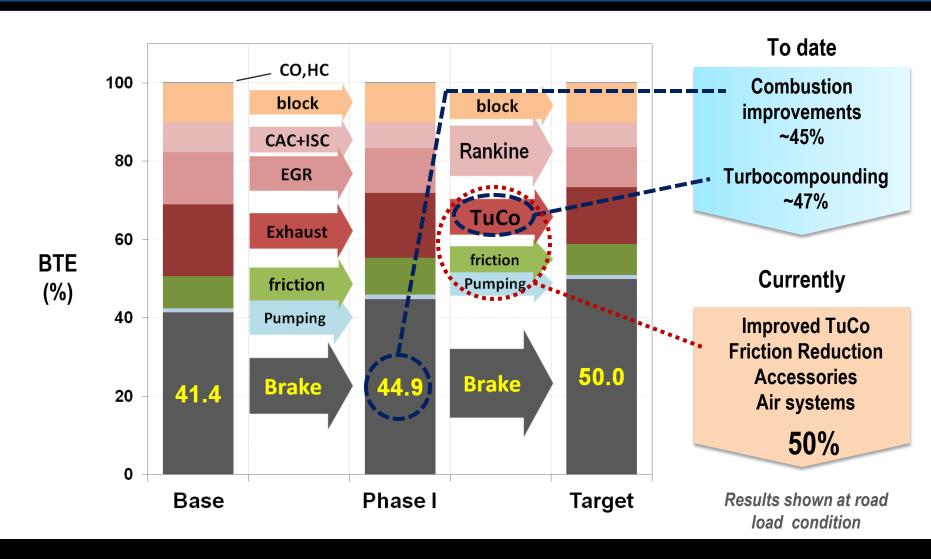
20% engine η gain ~ 50% BTE ~19% freight efficiency gain

Approach

Timeline and Tuning Engine Technology Build

Phase I (completed)

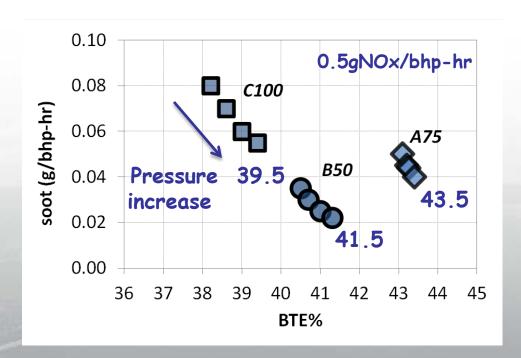
- ✓ Combustion raised 3% BTE
- ✓ Turbocompounding raised 1.6% BTE
 - ✓ Current dyno demo at 46.5% BTE

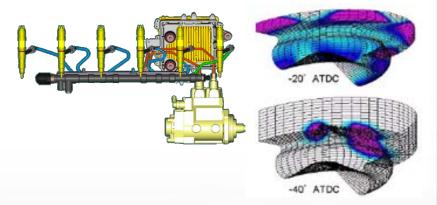

Phase II (current)

- ✓ Continue comb development
- ✓ Continue Turbocompounding
 - ✓ Preparing for VVA
- ✓ Preparing for friction package

Note:
ORC development
will be on
dynamometer only

Progress to Date





1. Combustion Efficiency

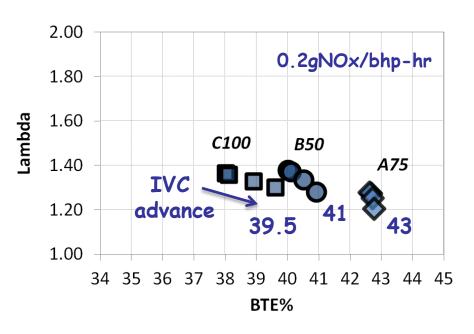
Comprehensive CFD for comb matching Improved injection system efficiencies Increased injection pressure Optimum NOx-PM-BTE

Results:

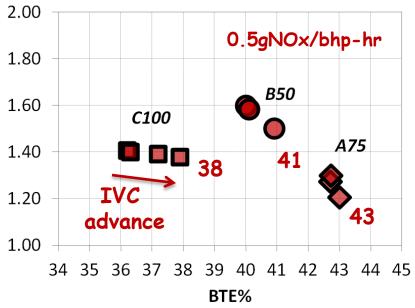
- ✓ improve BTE across N-range
- ✓ reduces soot across N-range

Ref.

D. Jadin, AMR 2011


W. de Ojeda, DEER 2011

2. Air System


MAXXFORCE™ Engine will incorporate a Variable valve actuation device:

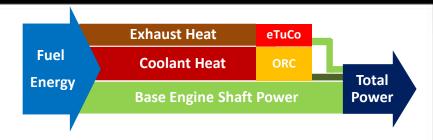
- -Control over combustion temperatures
- -Improved turbo matching

Results

- ✓ Thermodynamic gains across NOx range
- ✓ BTE across a wide range of speeds

Data based on simulation

3. Base Engine

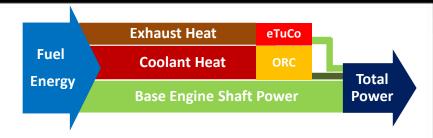


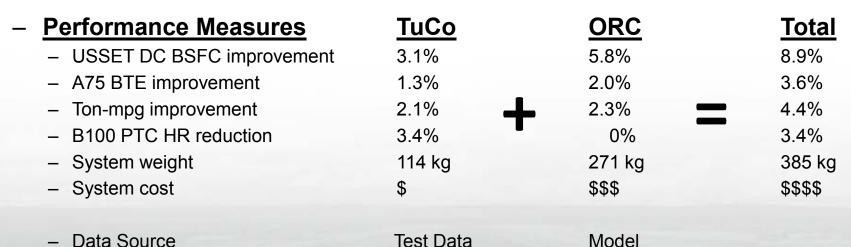
- ✓ <u>Three major engine categories</u>: Power cylinder, power transfer, crankcase
- ✓ Performance categories addressed: friction, peak cyl pressure, thermal management
- ✓ Target BTE improvement of 1.5 2.0% or more percent

		status	Target	Current Projection (BTE GAIN)
	Pistons	on engine stand		
	Rings	on engine stand		0.5
Power Cylinder	Connecting Rod	on engine stand	0.5	
_	Cyl Liner	on engine stand		
	Cooling Jets	under development		
	Crankshaft	under development		
	Main Bearings	on engine stand		
Power Transfer	Rod Bearings	on engine stand	0.6	0.6
	Camshaft	on bench stand		
	Stem Seals	under development		
Crankcase	Lube Pump	on engine stand	0.9	0.0
Crankcase	Coolant Pump	on bench stand	0.9	0.9

4. Waste Heat Recovery

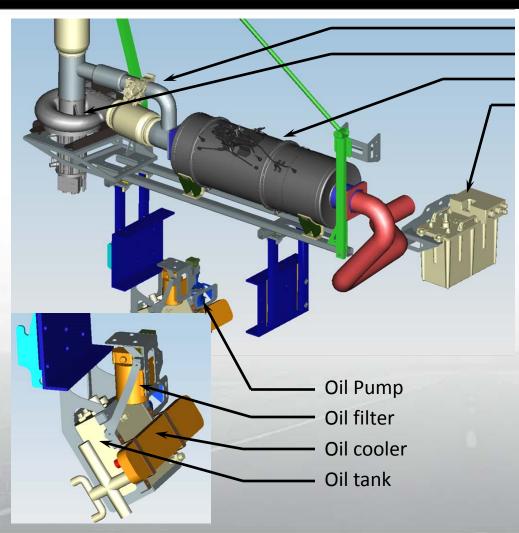
1. Turbo-compounding (eTuCo)


- ✓ Completed Gen. 1 cell testing and system optimization.
- ✓ Completed Gen. 1 transient calibration for vehicle operation
- ✓ Installed Gen. 1 system on Mule #2 for vehicle testing
- ✓ Completed Gen. 2 optimization and rematch study for demo trucks


2. Rankine Cycle (ORC)

- ✓ Finalized working fluid selection (Ethanol + denaturant)
 - Still looking for the optimum fluid
- ✓ Finalized system configuration using high temp. coolant through the condenser
- ✓ Completed designs for heat exchangers (with Behr), expander, and pump
- ✓ Hardware delivery on target for May 2012 system build

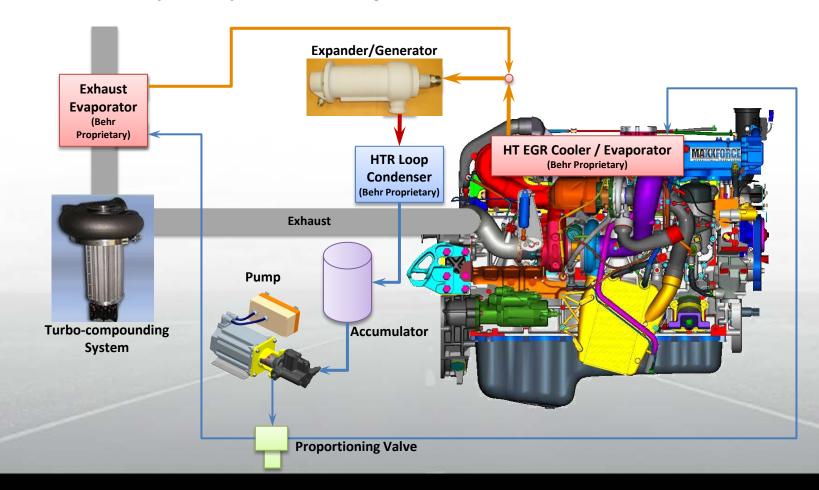
4. Waste Heat Recovery



+ GT-P Model Rematching

4a. Waste Heat Recovery (eTurbo-compounding)

Bypass
Turbo-generator
DPF
Power electronics


Mule Truck #2 eTuCo System Installation

4b. Waste Heat Recovery (Organic Rankine Cycle)

Rankine Cycle System Configuration

Accomplishments 55% BTE Target with Dual Fuel Engine

Co	mpleted		In progress		Not started
----	---------	--	-------------	--	-------------

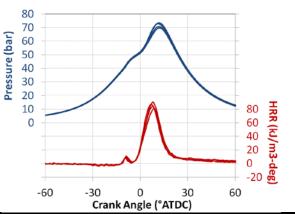
Task	Team
Lab and Dynamometer Ready Engine and control, install Instrumentation, DAQ	NAV ANL
Combustion Simulation (Phase 1)	WERC
Diesel Baseline	ANL
Phase 0 Build and initial testing Calibrate WERC models	ANL NAV
Phase I VVA + VGT Builds WERC modeling	ANL NAV
Phase II Added Fuel Reactivity	NAV
Phase III Piston Optimization	NAV
Phase IV Turbocompounding	NAV
Phase V Base improvements	NAV

Ref. W de Ojeda (DEER 2011)

Initial testing underway at Argonne Facility

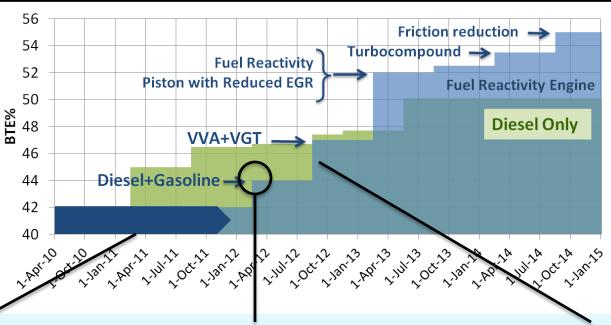
Early results are very encouraging

BMEP: 5.8 bar

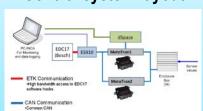

BTE gain > 3% over baseline

NOx: 0.06 g/hp-hr Smoke: 0.04 FSN

Gasoline%: 75%


Engine setup at Argonne facility, Darien, IL

55% BTE Target Roadmap



55% fuel reactivity engine

50% high efficiency Diesel

Completed:

- ✓ Engine Build
- ✓ Lab readiness
- ✓ Control system layout

Initial results are very encouraging

BMEP: 5.8 bar

BTE gain > 3% over baseline

Near zero emissions:

NOx: 0.06 g/hp-hr Smoke: 0.04 FSN

Leverage technologies from the High Efficiency Diesel platform

VVA

Two-Stage Turbocharger

EGR system

Turbocompounding

Friction reduction and accessories

Remaining Activities for 2012

Main activities:

- VVA installation and benchmarking in test cell
- Deploy next generation Electrical Turbo-compounding and integrate with VVA
- Benchmark the ORC system in test cell
- Initiate friction reduction in dedicated engine and facility
- Fuel Reactivity testing

Project Summary

- I. To date the following technologies have been incorporated:
 - ✓ On engine combustion, leading to a growth in BTE from 42 to 45%:
 - Extended peak cylinder pressure capability (190→220 bar)
 - Higher injection pressure (2200→2900 bar)
 - ✓ On heat recovery, leading to a further increase to 46.5%:
 - Electrical turbo-compounding with advance air system
 - Transferred to vehicle
- II. Current preparations include:
 - ✓ Nearly all base components procured with expectation to meet 1.5-2.0% BTE gain
 - Preparing for a systematic engine benchmark:
 - ✓ VVA engine is nearly complete for benchmark
- III. Advanced 55% BTE demonstrator is operational at ANL