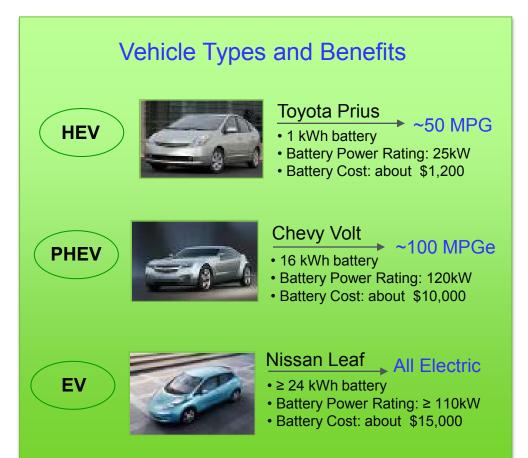


Energy Efficiency & Renewable Energy

US Department of Energy Vehicle Technologies Program

Overview of Battery R&D Activities



May 15, 2012

David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585

VTP Battery R&D

MISSION: Advance the development of batteries to enable a large market penetration of hybrid and electric vehicles to achieve large national benefits.

- Battery affordability and performance are the keys.
 Program targets include:
 - Increase performance (power, energy, durability)
 - Reduce weight & volume
 - Increase abuse tolerance
 - LOWER COST!
- 2015 GOAL: Reduce the production cost of a PHEV battery to \$300/kWh (70% below 2008 value)
- EV Everywhere: Reduce the production cost of an EV battery to \$125/kWh by 2022

Commercialization Activities and Notable Accomplishments

Nickel Metal Hydride


- Cobasys NiMH technology: Every HEV sold uses intellectual property developed in the DOE battery program. The US Treasury received royalty fees.
- ☐ High Power Lithium-Ion (HEVs)
 - JCS nickelate technology: BMW, Mercedes and Azure Dynamics /Ford Transit Connect
- High Energy Lithium-Ion (EVs)
 - A123Systems nano iron phosphate technology: Fisker, BAE, and Hymotion's Prius, GM Spark
 - CPI/LG Chem manganese technology: GM Volt extended range PHEV & Ford Focus EV

Commercial Applications

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

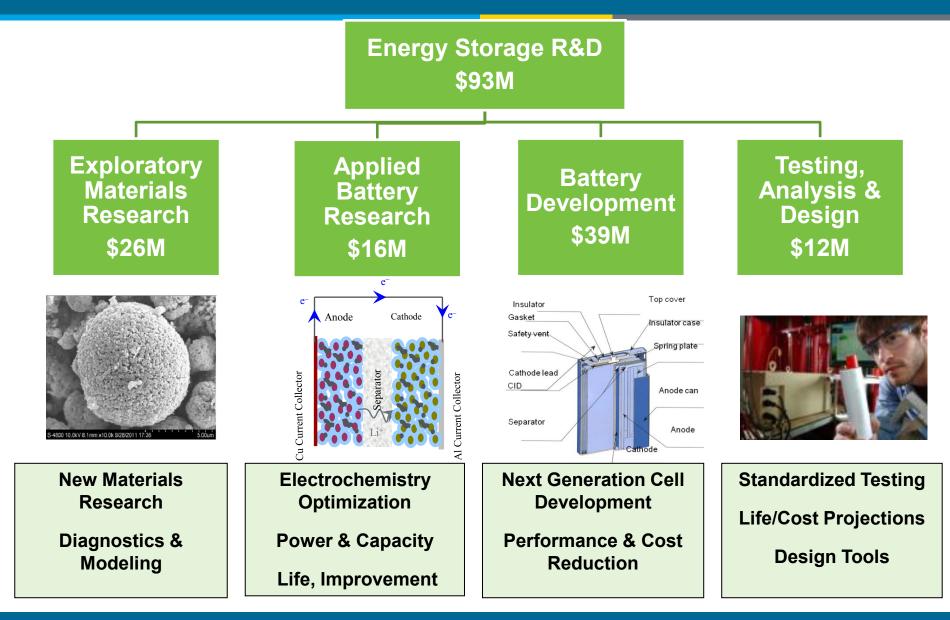
Commercialization Activities and Notable Accomplishments

Energy Efficiency & Renewable Energy

Science with an Impact

Licensing of Patents Generated using BATT Funding

Major Technical Challenges and Barriers


Energy Efficiency & Renewable Energy

Barrier/Challenge	Potential Solutions
Reduce cost Next Generation lithium ion (e.g., high capacity cathodes)	 Improve material and cell durability Improve energy density of active materials Improved manufacturing processes Improved design tools/design optimization
Improve abuse tolerance	 Non-flammable electrolytes High-temperature melt integrity separators Advanced materials and coatings Battery cell and pack level innovations such as improved sensing, monitoring, and thermal management systems
 Significantly increase energy density 3rd generation lithium-ion (e.g., silicon anode) Lithium-Sulfur Lithium-air 	 Develop ceramic, polymer, and hybrid structures with high conductivity, low impedance, and structural stability Improved electrolyte/separator combinations to reduce dendrite growth

VTP Energy Storage R&D: FY 2012

U.S. DEPARTMENT OF

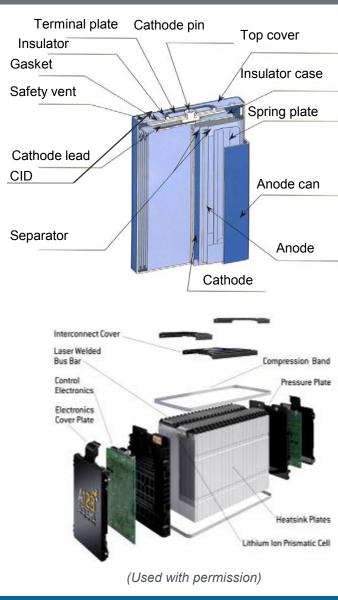
Energy Efficiency & Renewable Energy

VTP Battery Development

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Battery Performance Targets


EVPHEV40HEV

\$125/kWh (2020) \$300/kWh (2015) \$20/KW (2010)

Battery Cell/Pack Development

- □ Material Specifications & Synthesis
- Electrode Design, Formulation & Coating
- □ Cell Design/Fabrication
- □ Module & Pack Design/Fabrication
- Battery Control & Safety Devices
- Detailed Cost Modeling

PHEV Battery Performance Status

Battery Technical Targets/Status

Data based on the results of the initial PHEV battery development contracts awarded by USABC to A123Systems, LGChem, and Johnson Controls

	PHEV (10 mile AER)		PHEV(40 mile AER)	
DOE Energy Storage Targets	Target	Status (2011)	Target	Status (2011)
Discharge Pulse Power: 10 sec (kW)	45	~70	38	~95
Regen Pulse Power: 10 sec (kW)	30	~40	25	~70
Available Energy (kWh)	3.4	3.4	11.6	11.6
Calendar Life (year)	15	8-10	10+	8-10
Cycle Life (deep cycles)	5,000	3,000-5,000	5,000	3,000-5,000
Maximum System Weight (kg)	60	~57	120	~175
Maximum System Volume (I)	40	~45	80	~100
System Production Price (@100k units/year)	\$1,700	~2,600	\$3,400	~6,850

Battery Performance Status

- □ Initial EV battery development contracts started in FY2011
- □ Focus on high voltage/high capacity cathodes & EV cell design optimization
- Data based on initial work from USABC Envia Systems & Cobasys/SBLimotive contracts

Energy Storage Goals	AEV (2020)	Current
Equivalent Electric Range, miles	200-300	\checkmark
Discharge Pulse Power (10 sec), kW	80-120	\checkmark
Regenerative Pulse Power (10 sec), kW	40	\checkmark
Available Energy, kWh	40-60	\checkmark
Recharge Rate, kW	120	50
Calendar Life, years	10+	TBD
Cycle Life, cycles	1,000 deep cycles	TBD
Operating Temperature Range, °C	-40 to 60	0 to 40
System Weight, kg	160-240	500-750
System Volume, liters	80-120	200-400
Production Cost (@100,000 units/year)	\$125/kWh	< \$600

Energy Efficiency & Renewable Energy

- Various companies recently awarded to develop advanced Lithium-ion cells and manufacturing processes which would reduce cost
- □ Each award: \$2M \$5M

Awardees			
Battery Cells (>300 Wh/kg and >500 Wh/l)	Low-cost Processing and Design 2x cost reduction (<\$400/kWh)		
Amprius, Inc.	Johnson Controls (Maxwell/Entek)		
Dow Kokam (Dow Chemical/ORNL)	Miltec UV Int. (ANL/ORNL)		
Nanosys, Inc. (LG Chem)	A123 Systems (Maxwell)		
3M Company	Applied Materials (LBNL/ORNL)		
Seeo, Inc.	DENSO Int'l America (NREL)		
Penn. State University (ANL/JCI)	Optodot Corp (Dow Kokam, URI, Madico, ISP)		

R&D Highlights: Industry

Energy Efficiency & Renewable Energy

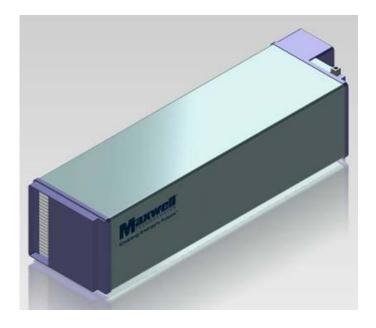
High Specific Energy Cathodes (Envia Systems)

High Specific Energy Cell

- Cathode high capacity layeredlayered
- Anode graphite
- Successfully scaled-up cathode material and built large capacity cells (20Ah)
- Achieved over 200 Wh/kg
- ARPA-E award to develop very high capacity silicon-carbon anode
 - Record-setting cell specific energy (>400 Wh/kg).

SEM image of cathode #8 used in cell build #2

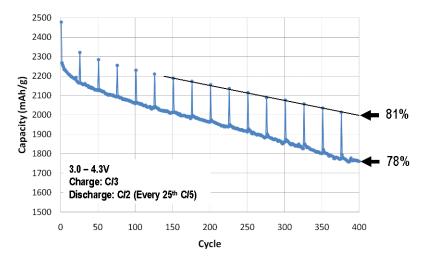
Envia Systems 45Ah cells


R&D Highlights: Industry

Energy Efficiency & Renewable Energy

Ultracapacitor Development (Maxwell Technologies)

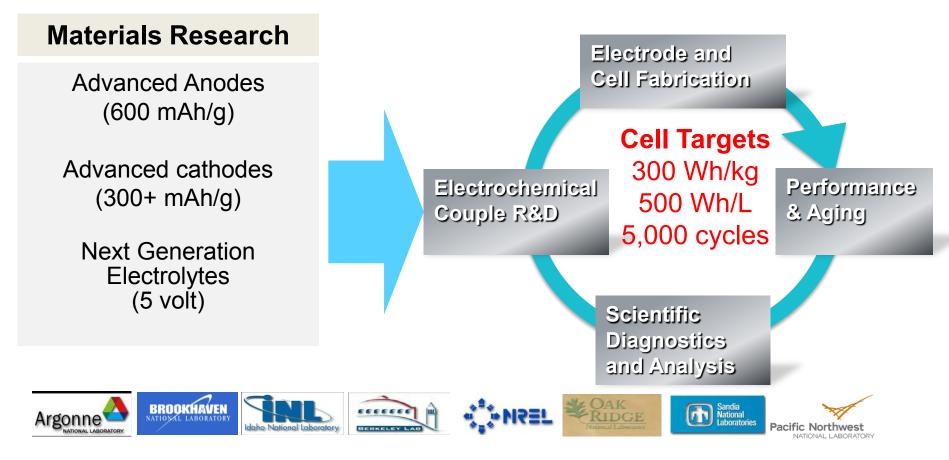
- Ultracapacitor system for power assist HEVs.
 - Developed 250 Farad prismaticallywound cells using patented dry film electrode coating process.
 - 20% reduction in volume and 17% reduction in cost (over baseline cells).
 - Good low temperature performance at -30°C.
- Developed asymmetric capacitor in small laboratory-sized cells using dry film process
 - Cycled at higher voltages than current ultracapacitors.



Proposed pack design including all cells, electronics, and thermal management

Minnesota Mining and Manufacturing Co. (3M)

- Developed very high capacity silicon alloy composite anode materials with high cycle-life
- □ Si-based alloy design
- Specific capacity of 2,300 mAh/g and Volumetric Capacity of 1500 mAh/cc after full lithiation and expansion
- 3M plans to commercialize this material.

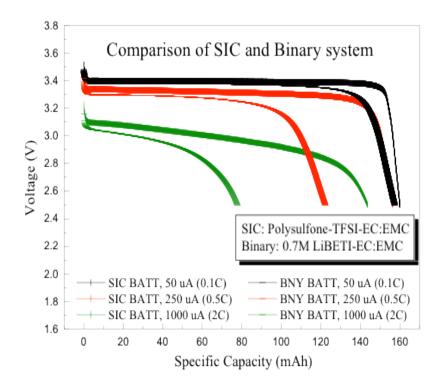


Capacity retention for 18650 cell using 3M alloy, L-20772, in 2:1 blend with graphite.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Goal: develop and expedite commercialization of advanced materials for electric drive vehicle batteries


Supports R&D at 19 different Universities and 16 different Industry partners

R&D Highlights: National Laboratories

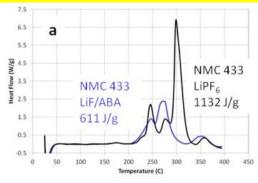
Energy Efficiency & Renewable Energy

High Voltage Single-ion Conducting Electrolytes (LBNL)

- High voltage single-ion conductor (SIC) gel electrolytes based on a polysulfone/carbonate blend:
 - Reduces impedance against lithium metal by an order of magnitude.
 - Potential to use as binder to enable thicker electrodes
- Stable at high voltages up to at least 4.5V
 - Stable with several high energy cathodes, including the spinel-type and composite cathodes.

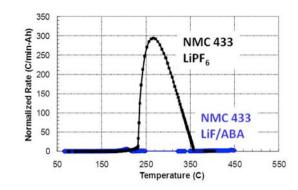
U.S. DEPARTMENT OF

ENERGY


Discharge capacity as a function of rate comparison for single ion conductors versus binary salt electrolytes

R&D Highlights: National Laboratories

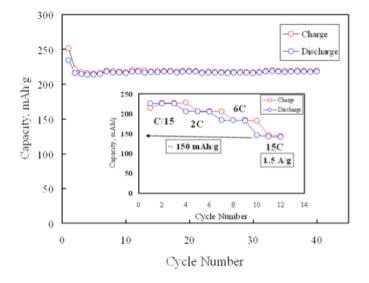
Energy Efficiency & ENERGY Renewable Energy


Lithium Fluoride-Anion Binding Agent Electrolytes (SNL)

- For enhanced abuse tolerance
- Significant improvements in the thermal stability of cathodes in Lithium Flouride/anion binding agent electrolytes
- Improvements in cell runaway response with the same electrolytes
 - The specific heat measured for a NMC433 cathode was reduced almost 50% : from 1132 J/g with LiPF₆ to 611 J/g using LiF/ABA
- Collaboration with Binrad Industries.

U.S. DEPARTMENT OF

DSC profiles of NMC433 at 4.3 V in 1.2 M LiPF₆ in EC:EMC (3:7) and 1.0 M LiF/ABA in EC:EMC (3:7)

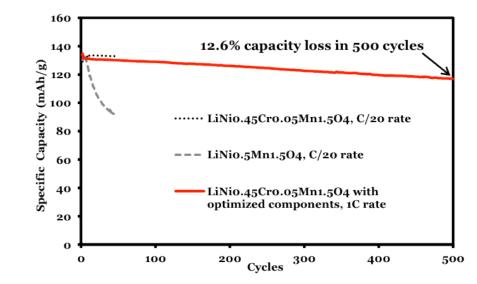


ARC profiles for NMC433 18650 cells in 1.2 M LiPF₆ in EC:EMC (3:7) and 1.0 M LiF/ABA in EC:EMC (3:7) at 4.3 V

R&D Highlights: National Laboratories

High-Energy Composite Cathode Materials (ANL)

- Li-ion exchange of the layered Na phases $(Na[M]O_2)$ used to minimize site disorder in cathodes of layered oxides (LiMO₂) found to cost effectively produce high energy, and high rate cathode materials.
- This new material shows excellent energy density
 - Increase from ~150 mAh/g at 3.7 V to >220 mAh/g at 4.8V
 - The material retains 150 mAh.g capacity at 15C rate (inset chart)


U.S. DEPARTMENT OF

Capacity versus cycle number (15 mA/g), and inset is the capacity versus current rate, of Li/IE-LNMO cell between 4.8V and 2.0V.

R&D Highlights: National Laboratories

Improved Doped High-Voltage Spinel Cathodes (PNNL)

- Chromium-doped high-voltage spinel, LiNi_{0.45}Cr_{0.05}Mn_{1.5}O₄, which exhibits stable cycling and greatly improved efficiency.
 - Low concentrations of LiBOB improve its first-cycle efficiency , from 76% to 85%, and the rate capability increases.
 - Improvement in the Coulombic efficiency and cycling stability occur as well.

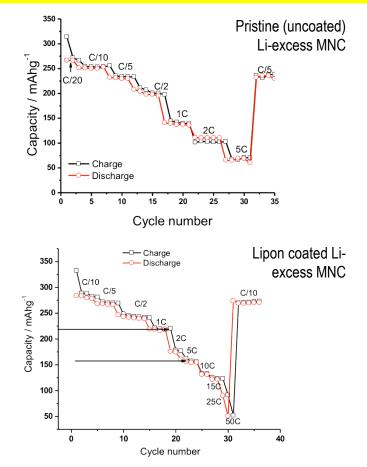
U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Comparison of cycling stability for $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ (dashed line) and $\text{LiNi}_{0.45}\text{Cr}_{0.05}\text{Mn}_{1.5}\text{O}_4$ (dotted line). $\text{LiNi}_{0.45}\text{CrMnO}$ tested with optimized electrolyte and other components exhibits excellent stability (solid line)


R&D Highlights: National Laboratories

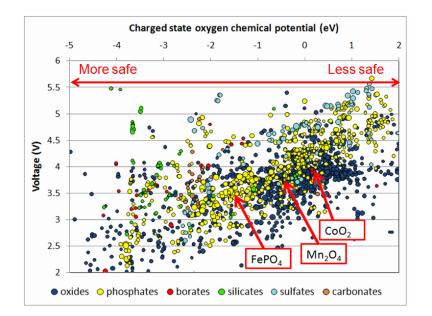
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

High-Energy Lithium-rich Cathodes (ORNL)

- Surface coating of the high voltage lithium rich material shows improvement rate performance
 - $0.6Li_2MnO_3 \cdot 0.4Li \ [Mn_{0.3}Ni_{0.45} Co_{0.25}]O_2$ (~200 mAh/g at C/2)
 - a few nanometer thick layer of Lithium phosphorus oxynitride (Lipon)
 - Uncoated materials capacity retained 50% of its capacity from C/5 to 2C while the Lipon coated cathodes retained 80% of its capacity.
 - Lipon coated sample demonstrated repeatable cycling 120 mAh/g at 15C

Rate Performance Comparisons at 25°C with similar electrode composition (85% active materials, 7.5 % PVDF and 7.5 % carbon (Timcal Super C65))


R&D Highlights: Universities

Energy Efficiency & Renewable Energy

Materials Search Engine (LBNL/MIT)

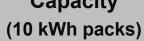
- A Google-like materials search engine
 - Over 15,000 computed compounds.
 - Searchable access to general materials properties.
 - 'Apps' designed to aid in materials design for specific application areas such as Li-ion battery technology.
 - Available at LBNL website

Sample graph of a portion of the 15,000 compounds contained in the materials project database

Major R&D Achievements (2009–2011)

- □ Lithium-ion battery cost reduction on track (USABC)
 - Production cost reduced to ~\$650/kWh for 100,000 packs/year
- □ Lifetime of lithium-ion batteries extended (USABC/Labs)
 - up to 10-15 years for some technologies
 - 3,000-5,000 deep discharge cycles
- □ Cathode technology for Chevrolet Volt battery (ANL)
 - Licensed to GM, LG Chem, BASF, Toda America, Envia
 - Focused R&D effort to solve remaining issues
- Significantly expanded R&D to develop Silicon Composite & Metal alloy materials and cells
- Research activity focused on beyond-Lithium-ion technology initiated

Recovery Act: Battery Manufacturing


U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Establish U.S. EDV battery manufacturing capacity

ARRA: \$1.5B INDUSTRY: \$1.5B

Cell & Pack Production Capacity

- □ Johnson Controls: cell production and pack assembly at in Holland, MI
- A123Systems: cathode, cell, & pack assembly in Livonia & Romulus, MI
- EnerDel: Cell production & pack assembly at Fishers & Mt Comfort, IN
- General Motors: battery pack assembly at Brownstown, MI
- □ SAFT: cell production at Jacksonville, FL
- Exide: advanced lead acid battery production established in Columbus, GA
- East Penn: Advanced Lead Acid battery production established in, PA
- Dow Kokam: cell & pack capability in Midland, MI in 2012
- LG Chem: cell & pack capability in Holland, MI in 2012

Toda America, Inc. Battle Creek Facility

A123Systems, Livonia Facility

Recovery Act: Battery Manufacturing

Energy Efficiency & Renewable Energy

Progress

Materials Production

Cathode

TODA: production established
 BASF: *Target: Commission in 4Q*

Anode

EnerG2: production established
 FutureFuel: production established
 Pyrotek: production established

Separator

- □ Celgard: production established
- □ Entek: *Engineering scoping completed*

Electrolyte

□ Honeywell: Li-salt pilot plant operational

□ Novolyte: Equipment installation

Lithium

□ Chemetall Foote: lithium hydroxide

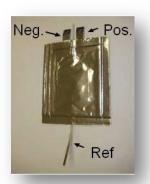
Cell Hardware

□ H&T Waterbury: production established

Toda America, Inc. Battle Creek Facility

A123Systems, Livonia Facility

Intra Government Collaborations

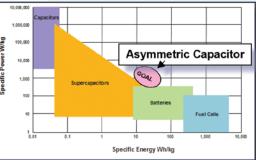

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Department of Transportation/NHTSA
 - Joint studies, working groups
 - Regulations for battery transportation
- Department of Defense
 - Tank Automotive Research, Development and Engineering Center (TARDEC)
 - U.S. Army Research Laboratory
 - Naval Surface Warfare Center/Carderock

Environmental Protection Agency

 Validated "BatPaC" a Lithium-Ion Battery Performance and Cost Model to support 2017-2025 CAFE and GHG regulations


Volt battery pack being prepared for test



For Additional Information...

Energy Efficiency & Renewable Energy

Dave Howell, Team Lead, Hybrid and Electric Systems 202-586-3148