

Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

Kent Snyder USABC May 15, 2012

ES097

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start July 2006 (current CA)
- Ongoing

Budget

- Total project funding (FY2011)
 - DOE share \$7.5M
 - Contractor share \$7.5M
- Funding for FY12
 - \$21.6M

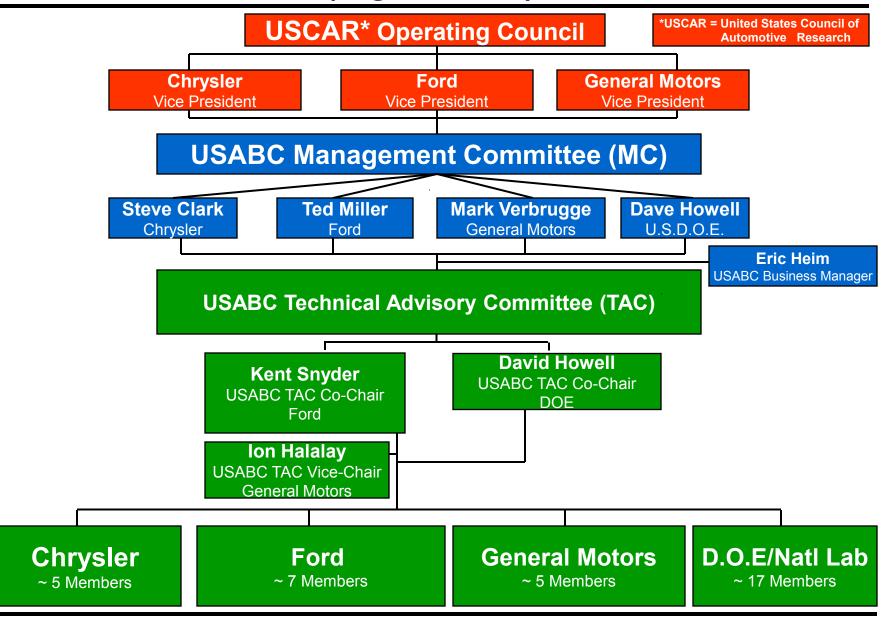
Barriers

- Barriers
 - Battery Cost
 - Battery Performance
 - Battery Life
- Targets

DOE Goals	HEV 2010	PHEV 2015	EV 2020
<u>Cost</u> \$ / System	500-800	1700-3400	4000
Performance Discharge Power (kW) Available Energy (kWh)	25-40 0.3-0.5	38-50 3.5-11.6	80 30-40
Life Cycles	300k (shallow)	3000-5000 (deep discharge)	750 (deep discharge)

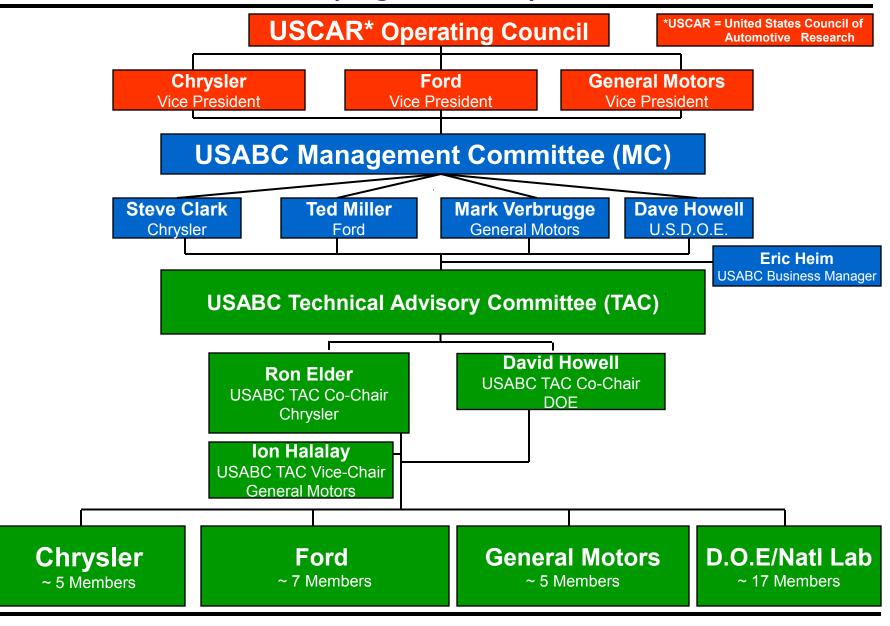
Partners

- Chrysler, Ford, GM, DOE
- INL, ANL, SNL, NREL, LBNL, ORNL



Overview (Mission)

- The United States Advanced Battery Consortium (USABC), comprised of Chrysler, Ford, and General Motors, funds pre-competitive electrochemical energy storage R&D
- Funding for development activity occurs through a cooperative agreement between USABC and DOE.
- This cooperation allows for the combined technical and financial resources of the DOE, OEM automakers, development partners, and U.S. National laboratories in jointly conducting advanced battery research and development.



(organization)

(organization)

Collaborations

Development Partners

Technical Expertise Tangible Cost Data Applied Research Capability Manufacturing Capability Hardware Deliverables Cost-Shared Funding

Automotive OEM's

Technical Expertise Program Management Test Method Development Industry Experience & Input Development Partner Assistance Real World Requirement Perspective

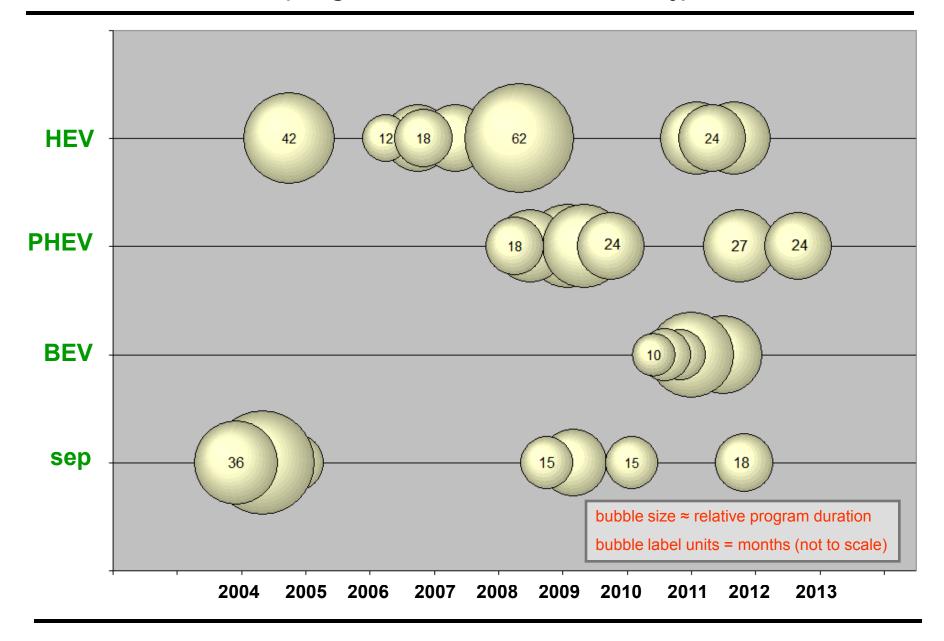
COOPERATIVE GROUP EFFORT

National Labs


Life Prediction Abuse Testing Development Partner Assistance Long Term Fundamental Research Performance & Benchmark Testing Thermal Analysis & Design Support Battery Simulation and Model Development

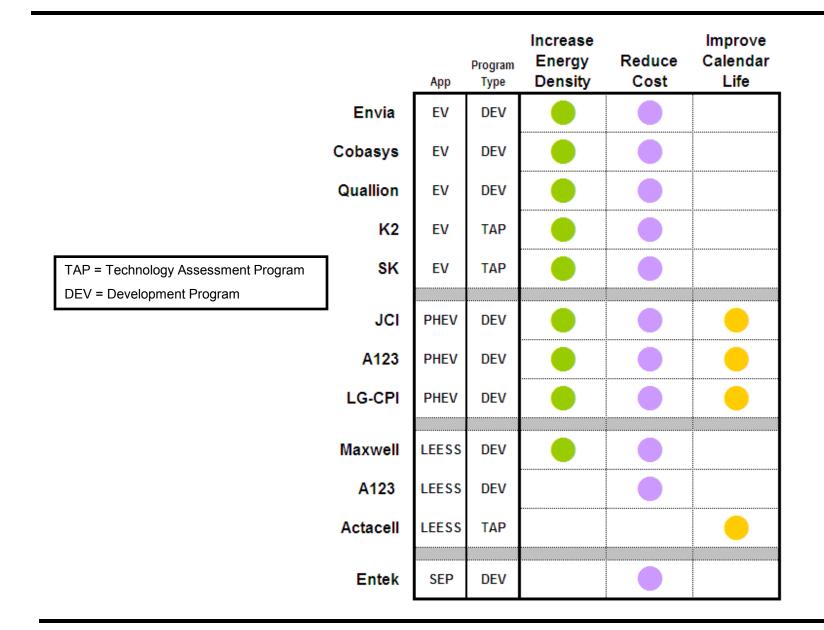
DOE

Funding Coordination National Lab Management Governmental Perspective



(Program Budget HIstory)

(Program Relative Duration History)



Initiate USABC Programs Towards 2010 RFPI Focus Areas and Begin New Requirements Development

Objectives:

- Initiate and manage new and follow-on programs targeting reduced cost via increased energy density in high-energy (PHEV & EV) systems, and reduced cost via lower total energy content in HEV systems
- Form workgroups and begin development of requirement sets for electrolytes and 12V stop-start applications, and revise existing EV goals

Key Focus Points In FY2011 UNITED STATES ADVANCED BATTERY CONSORTIUM LLC Ongoing & New Program Examples

Approach (HEV)

For further HEV battery system cost reduction, projects initiated towards newly developed alternate HEV goals

- Reduce cost via total energy content reduction
- Maintain significant HEV power capability

End of Life Characteristics	Unit	PA (Low	PA (Lower Energy)	
2s / 10s Discharge Pulse Power	kW	55	20	
2s / 10s Regen Pulse Power	kW	40	30	
Discharge Requirement Energy	Wh		56	
Regen Requirement Energy	Wh	83		
Maximum current	А	300		
Energy over which both requirements are met	Wh		26	
Energy window for vehicle use	Wh	1	165	
Energy Efficiency	%		95	
Cycle-life	Cycles	300,00	00 (HEV)	
Cold-Cranking Power at -30°C (after 30 day stand @ 30 °C)	kW		5	
Calendar Life	Years	15		
Maximum System Weight	kg	20		
Maximum System Volume	Liter		16	
Maximum Operating Voltage	Vdc	:	$\leq \Box \Box$	
Minimum Operating Voltage	Vdc	°О.	55 V _{max}	
Unassisted Operating Temperature Range	°C	-30	to +52	
30 ° -52°	%	1	100	
O°	%		50	
-10 [°]	%		30	
-20°	%		15	
-30°	%		10	
Survival Temperature Range	°C	-46	to +66	
Selling Price/System @ 100k/yr)	\$	4	100	

Low Energy - Energy Storage System (LEESS) Power Assist HEV Goals

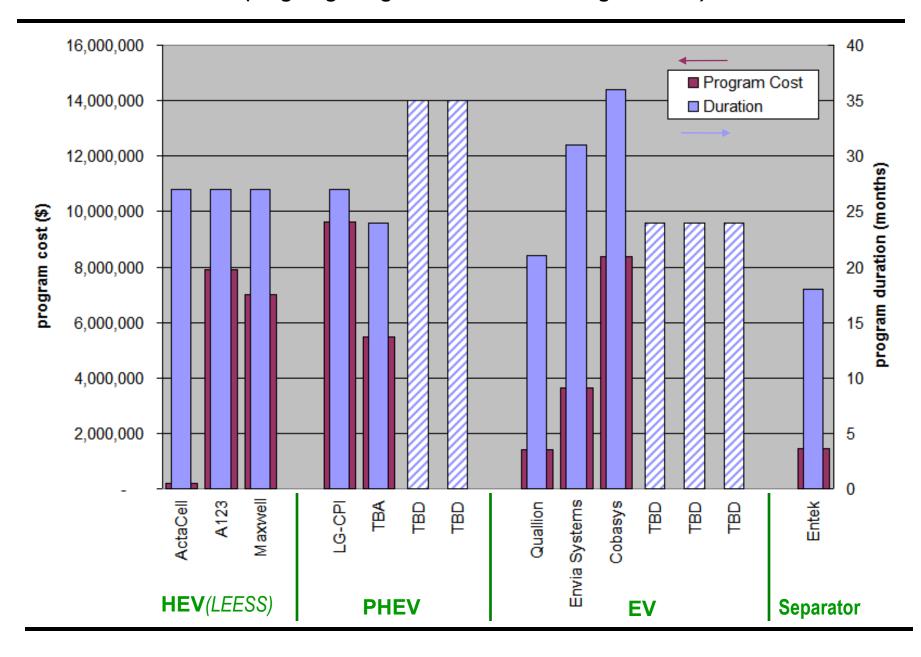
Approach (PHEV & EV)

For further higher-energy battery system cost reduction on a \$/kWh basis :

- projects initiated towards higher-mile-range PHEV goals and historical EV goals
- \$ benefit of energy density increase maximized with higher energy content systems

	<u>10-mile PHEV</u>	<u>20-m</u>	ile PHEV	<u>40</u>	-mile PHE
Energy					
(kWh)	3.4 avail	5.8 avail		11.3 avail	
	USABC Requirements of End of	i Lile Energy Si	brage Systems for	PHEVs	
Clear	einin at BOL (Bat of Life)	T	High PoweofEnergy Ratio Battery	Mederate EnergyPowerRatio Battery	High EnergyPower Rains Battery
Reference Equivalent	t Electric Range	ni es	10	20	40
Peak Pulse Discharge	e Power- 2 Sec/ 10 Sec	KW	50/45	45/37	46/38
Peak Regen Pulse Po	ower (10 sec)	KW	30	25	25
Max. C urrent (10 sec	pulse)	A	300	300	300
Available Energy for C	D (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	5.8	11.6
Available Energy for C	S (Charge Sustaining) Mode	KWh	0.5	0.3	0.3
Minimum Round-Irip E	Energy Efficiency (USABC HEV Cycle)	*	90	90	90
Cold cranking power a	at -30°C, 2 sec - 3 Palses	KW	7	7	7
CD Life / Discharge T	hronghpat	Cycles/MW h	5,000 / 17	5000/29	5,000/58
C S HEY Cycle Life, S	0 Wh Profile	Cycles	300000	300000	300000
Calendar Lile, 35°C		year	15	15	15
Maximum System We	eight .	kg	60	70	120
Maximum System Vo	lan e	Liler	40	46	80
Maximum Operating Y	Vollage	Viic	400	400	400
Minimum Operating V	6 lage	Vilc	>0.55 x Vinax	>0.55 x Vinax	>0.55 x Vinax
Maximum Self-discha	rge	Wilday	50	50	50
System Recharge Ra	le at 30°C	KW	1.4 (120V/15A)	1.4 (120v/15A)	1.4 (120v715A)
Unassisted Operating	& Charging Temperature Range	•C	-30 to +52	-30 to +52	-30 to +52
	30"-52"	*	100	100	100
	۳.	*	50	50	50
	-10"	*	30	30	30
	-20"	*	15	15	15
	-30"	*	10	10	10
Suninal Temperature	Range	•C	-46 to +66	-46 to +66	-46 to +66
Maximum System Pro	oducilion Price @ 100k units.lyr	\$	\$1,700	\$2,200	\$3,400

USABC Goals for Advanced Batteries for EVs


Parameter(Units) of fully burdened system	Minimum Goals for Long Term Commercialization	Long Term Goal
Power Density(W/L)	460	600
Specific Power – Discharge, 80% DOD/30 sec(W/kg)	300	400
Specific Power - Regen, 20% DOD/10 secW/kg	150	200
Energy Density - C/3 Discharge Rate(Wh/L)	230	300
Specific Energy - C/3 Discharge Rate(Wh/kg)	150	200
Specific Power/Specific Energy Ratio	2:1	2:1
Total Pack Size(kWh)	40	40
Life(Years)	10	10
Cycle Life - 80% DOD (Cycles)	1,000	1,000
Power & Capacity Degradation(% of rated spec)	20	20
Selling Price - 25,000 units @ 40 kWh(\$/kWh)	<150	100
Operating Environment(°C)	-40 to +50	-40 to +85
	20% Performance Loss (10% Desired)	
Normal Recharge Time	6 hours (4 hours Desired)	3 to 6 hours
High Rate Charge	20-70% SOC in <30 minutes @ 150W/kg	40-80% SOC in15 minutes
	(<20min @ 270W/kg Desired)	
Continuous discharge in 1 hour - No Failure(% of rated energy capacity)	75	75

FY2011 Accomplishments (Program Negotiations & Initiations)

Accomplishments (Ongoing Programs in 2012 & Going Forward)

Accomplishments

(Electrolyte Goals Development Example)

Workshop Schedule

Focus on Key Topics

- High Voltage
- Low Cost
- Low Temperature

Breakout Session Format

- Allows all to contribute
- All will Discuss All Topics

Conversation Starters

- Draft Requirements
- Topic Specific Questions

Room Assignments

- Workshop CR5
- Breakouts CR1, CR2, CR3

	Thursday, August 18, 2011
9:00	Workshop Overview, Breakout Assignment
9:15	USABC Presentation (Masias)
9:45	BATT Presentation (Foure)
10:15	Break
10:30	ABR Presentation (Amine & Zhang)
11:00	ABR Presentation (Xu & Jow)
11:30	Lunch
12:30	High Voltage Breakout
1:30	High Voltage Joint Discussion
2:30	Break
2:45	Low Cost Breakout
3:45	Low Cost Joint Discussion
4:45	First Day Wrap-Up
	Friday, August 19, 2011
9:00	ABR Presentation (Smart)
9:30	Low Temperature Breakout
10:30	Low Temperature Joint Discussion
11:30	Wrap-Up Workshop Summary

12V Attribute/Characteristic	Units	Target
Discharge Pulse, 1s	kW	6
Max current, 1s	Α	*800
Engine-off accessory load	kW	1.5
Cold cranking power at -30 °C (three 2-s pulses, 10 rests between)	kW	5
Min voltage under cold crank	Vdc	8
Available energy (@ 1.5 kW)	Wh	100
Recharge Rate	Ŵ	750
Cycle life miles/profiles (Engine starts)	/	150k/150k (450k)
Calendar Life	Years	15
Minimum round trip energy efficiency	%	95
Maximum allowable self-discharge rate	Wh/day	10
Maximum Operating Voltage	Vdc	14.6
Minimum Operating Voltage under Joad	Vdc	>10.5
Operating Temperature Range (available energy)	°C	-30 to + 52
<u>30 °C - 52 °C</u>	%	100
	%	50
δ° φt	%	30
20°C	%	15
30 °C⁄	%	10
Survival Temperature Range	°C	-46 to +66
Maximum System Weight	kg	10
Maximum System Volume	L	5
System Selling Price (@100k/year)	\$	\$180

Collaborations

- Battery & Battery Material Development Partners !!!
- Chrysler, Ford, GM
- DOE
- Idaho National Labs, Argonne National Labs, Sandia National Labs, National Renewable Energy Labs, Lawrence Berkely National Labs, Oak Ridge National Labs

- Finalize 12V Stop-Start requirements and develop and issue related RFPI for potential program initiations in 2013
- Finalize electrolyte requirements and develop and issue related RFPI for potential program initiations in 2013
- Finalize overhauled EV goals and requirements towards potential new future programs

Summary

- Remaining down-selected programs from 2010 RFPI process contracted and initiated in 2011
- Key follow-on programs contracted and initiated in 2011
- Electrolyte workgroup and requirements development initiated
- 12V Stop-Start workgroup and requirements development initiated
- EV goals overhaul workgroup initiated