2012 DOE Program Review: Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies



PI: YK Son Presenter: Bernhard Metz 5/14/2012



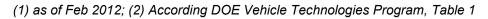
This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Project Overview**

#### Timeline

- Start: October 2011
- Finish: December 2014
- Final report to DOE: January 2015
- On schedule, 10% completed<sup>(1)</sup>

### Budget


- Total project funding
  - DOE: \$3.67M
  - Johnson Controls and subrecipient: \$3.67M
- Funding received in 2011: NA

#### **Barriers**

- Barriers for electrification of passenger vehicles<sup>(2)</sup>
  - Public acceptance of electrified vehicles
  - Vehicle and battery costs
  - Current manufacturing process is electrical energy intensive
- Target: reducing Li-lon manufacturing cost by > 50%

#### Partners

- Entek Membranes
- Maxwell Technologies
- University of Wisconsin Milwaukee





## **Project Objective**

**Project scope** 

Significant cost improvement of Li-lon manufacturing process:

- Non-NMP electrode coating process
- Direct coated separator
- Fast formation process
- Optimized cell design



#### >50% cost reduction

(Li-lon pouch cells)





### **Milestones**

## Key milestones and decision points



Project Progress

|                               | 2011       | 2011 2012        |    |                  |                                                               |                                          | 2013           |                              |                  |                                                                                      | 2014 |                             |                    |  |
|-------------------------------|------------|------------------|----|------------------|---------------------------------------------------------------|------------------------------------------|----------------|------------------------------|------------------|--------------------------------------------------------------------------------------|------|-----------------------------|--------------------|--|
|                               |            | Q1               | Q2 | Q3               | Q4                                                            | Q1                                       | Q2             | Q3                           | Q4               | Q1                                                                                   | Q2   | Q3                          | Q4                 |  |
| Planni                        | ng         |                  |    |                  |                                                               |                                          |                |                              |                  |                                                                                      |      |                             |                    |  |
| Electrode Non-<br>NMP Coating |            |                  |    |                  |                                                               |                                          |                |                              |                  |                                                                                      |      |                             |                    |  |
|                               |            |                  |    | el<br>90         | D% perf of dr<br>ectrode to ba<br>D% perf com<br>VDF binder e | seline electrode to baseline<br>pared to |                |                              | e<br>100% perf   | ng 95% perf of d<br>electrode to b<br>100% perf compared to<br>PVDF binder electrode |      |                             |                    |  |
| Separa                        | tor        |                  |    |                  | 0% perf of dr<br>ectrode to ba                                |                                          |                | f of dry coat<br>to baseline |                  |                                                                                      |      | perf of dry<br>trode to bas |                    |  |
| Format                        | tion       |                  |    | ,<br>1<br>1      |                                                               |                                          |                |                              |                  |                                                                                      |      |                             |                    |  |
|                               |            |                  |    |                  |                                                               | 10% improv<br>e – 50% red                |                | Wetting -                    | 20% improv       | ement                                                                                |      | Aging<br>60% r              | time<br>eduction   |  |
| Cell De                       | evelopment |                  |    |                  |                                                               |                                          |                |                              |                  |                                                                                      |      |                             |                    |  |
|                               |            |                  |    |                  | Base                                                          | eline cell                               |                |                              |                  | compared<br>iseline                                                                  |      |                             | compared<br>seline |  |
|                               |            | 1<br>1<br>1<br>1 |    | 1<br>1<br>1<br>1 |                                                               |                                          | <br> <br> <br> |                              | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1                                                                     |      | 50%<br>reduc                |                    |  |



## Approach

#### Dry coated electrode

- Electrode design optimization
- Binder and electrolyte development
- Process and equipment optimization

#### Water-based cathode binder

- Eliminate NMP solvent
- Develop material with electrochemical and chemical stability

### Direct-coating of separator material on Li-lon electrodes

- Solvent coating
- Dispersion coating
- Powder coating

# Separator lamination on Lithium-Ion electrodes

Free-standing, high structure stability separator development

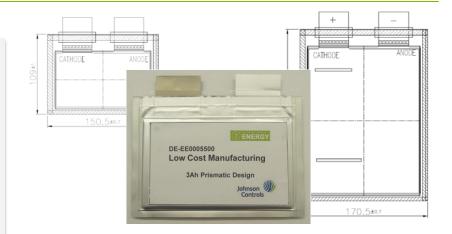


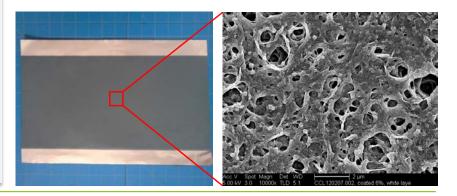
## **Technical Accomplishments** FY 2011

#### **Baseline cell designs**

Design completed for 3Ah and 15Ah pouch cells with 140Wh/kg and 280Wh/l energy density

#### **Dry Coating Electrodes**


Initial electrodes are demonstrating positive results in coin cells.


#### Water based cathode

 Cycling performance meets the reference performance while capacity achieves 90% of target.

#### **Direct coated separator**

Micro porous polymer film applied successfully to electrode surface, half cell performance stable in half cell format.







## Collaborators

## **Maxwell Technologies**

- Award sub-recipient
- Leader in ultracapacitor technology
- Focus on dry coating electrode research

# University of Wisconsin – Milwaukee

- Partner in innovation
- Leading institute in material science and energy storage
- Focusing on fast formation modeling and cell characterization

# **Entek Membranes**

- Award sub-recipient
- Leader in microporous membranes
- Focus on direct coated separator







## **Future Work**

#### Remainder of 2012

- Build and evaluate 3Ah and 15Ah baseline cells
- Build baseline cell cost model
- Build and evaluate coin cells with integrated technologies
- Deliverables to DOE
  - 18 of 15Ah baseline cells
  - Baseline cost model
  - Coin cells results

#### Remainder of the project

- Build and evaluate new 3Ah and 15Ah incorporating technology advancements
- Optimize dry coating and non-NMP electrode approaches
- Select separator approaches based on cell performance
- Study and evaluate fast formation process
- Deliverables to DOE
  - 2013: 18 of new 3Ah cells
  - 2014: 24 final15Ah cells and cost model



## Summary

- Current Li-ion battery cost is a barrier to mass market adoption for xEVs
  - Typical xEVs command ~\$10K premium over ICE powertrain counterparts
  - EV battery pack could cost \$8K \$18K per vehicle
- Improved process efficiency is a key cost reduction levers for batteries
  - The project aims to reduce manufacturing cost by 50% through
  - Integrated cell design
  - Reducing energy consumption during the manufacturing process
- Our partners are leaders in their respective fields
  - Entek to improve the separator process
  - Maxwell to improve electrode process
  - University of Wisconsin Milwaukee to assist in modeling and characterization of cell formation
- We are well-positioned to deliver the research goals
  - Initial results have confirmed the validity of the research plan
  - Johnson Controls has long history of commercial innovation and operation excellence

