


# Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief



Carol Schutte, PhD Team Lead for Materials Technology Will Joost Materials Engineer

Vehicle Technologies Program

May 16, 2012

eere.energy.gov

Objectives: identify targets and technology gaps to overcome

- 135 participants representing light duty vehicles (LDV) and heavy duty vehicles (HDV): – OEMs (36)
  - Material & Tier 1 suppliers (43)
  - -U.S. Government experts (8)
  - Canadian government (4)
  - Trade Organizations (5)
- Held March 2011 in Michigan

#### Workshop Participating Organizations



, Energy Efficiency & Renewable Energy

U.S. DEPARTMENT O

- DOE: Jerry Gibbs, William Joost
- Energetics: Michael Laughlin, Anand Raghunathan
- New West: Richard Bogacz, Peter Heywood, Peter McCallum, Daniel McKay, Jake Mello, Matthew Osterling, Rus Owens, Bryan Roy, Ken Weaver
- ORNL: Donna Balltrip, Ray Johnson, Philip Sklad, Kathi Vaughn, David Warren
- PNNL: Dean Paxton, Theresa Shoemaker, Mark Smith
- SRA –Sentec: Mary Apostolico, Steve Calandro, Abi Gaines, Steve Garon, Jon Hurwhich, Kenyon Larsen, Brian Pai, Phil Rizzi, Rich Scheer of Scheer Ventures, Lee Ann Tracy, Richard Ziegler

### Workshop Considerations

### <u>Day 1</u>

- Vehicle subsystems include:
  - -Structural systems:
    - Body structure
    - Chassis structures
    - Suspension and drivetrain systems
    - Engine and transmissions
    - Turbo-machinery
    - Exhaust and cooling systems
  - -Semi-structural and nonstructural systems:
    - Appearance panels
    - Enclosures
    - Bumpers



U.S. DEPARTMENT OF

Ianard

- Materials considered:
  - Advanced high strength steels
  - Cast iron
  - Aluminum
  - Magnesium
  - Carbon fiber composites
  - Glass fiber composites
  - Unreinforced plastics
  - Advanced materials such as:
    - Titanium
    - MMCs
    - Ni-based alloys

### Weight Reduction Goals for LDV

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

| LDV Component<br>Group | 2020 | 2025 | 2030 | 2040 | 2050 |
|------------------------|------|------|------|------|------|
| Body                   | 35%  | 45%  | 55%  | 60%  | 65%  |
| Power-train            | 10%  | 20%  | 30%  | 35%  | 40%  |
| Chassis/suspension     | 25%  | 35%  | 45%  | 50%  | 55%  |
| Interior               | 5%   | 15%  | 25%  | 30%  | 35%  |
| Completed Vehicle      | 20%  | 30%  | 40%  | 45%  | 50%  |



## Weight Reduction Goals for HDV

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

| <b>Class 8 Tractor</b><br>Component Group | 2020 | 2025         | 2030  | 2040  | 2050  |
|-------------------------------------------|------|--------------|-------|-------|-------|
| Wheels and Tires                          | 10%  | 20%          | 20%   | 25%   | 25%   |
| Chassis/Frame                             | 0%   | 10%          | 10%   | 20%   | 20%   |
| Drivetrain & Suspension                   | 0%   | 5%           | 10%   | 15%   | 20%   |
| Misc. Accessories/Systems                 | 5%   | 15%          | 25%   | 30%   | 35%   |
| Truck Body Structure                      | 15%  | 35%          | 45%   | 55%   | 60%   |
| Powertrain                                | 5%   | 10%          | 15%   | 15%   | 20%   |
| Total Class 8 HDV                         | 6%   | 16%          | 22%   | 27%   | 31%   |
| <b>Trailer (53 ft)</b><br>Component Group |      |              |       |       |       |
| Wheels and Tires                          | 10%  | 20%          | 20%   | 25%   | 25%   |
| Chassis/Frame                             | 0%   | 10%          | 10%   | 20%   | 20%   |
| Suspension                                | 0%   | 5%           | 10%   | 15%   | 20%   |
| Box/Other                                 | 5%   | 10%          | 15%   | 20%   | 25%   |
| Total Trailer                             | 3%   | 9%           | 13%   | 19%   | 23%   |
| Truck and Trailer<br>Combined Totals      | 4.8% | <b>13.2%</b> | 18.0% | 23.6% | 27.4% |

Vehicle Technologies Program

#### Overlap in Propulsion Materials Needs for LDV Engines & Transmission & HDV Engine and Engine Systems

# U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Priority materials development requirements for LDV



- Absence of modified aluminum to satisfy needs of high specific output and high efficiency downsized engines
- Absence of new materials' property data limits their use in modeling & design
- Lack of lightweight and high capacity electrical energy storage devices

Overlap in materials shortcomings for LDV and HDV

Lack of cost-effective lightweight materials for engine rotating components e.g.:

 Durable low-cost coatings for thermal, corrosion, wear barriers

Limited affordable materials that exceed performance of traditional materials Priority materials development requirements for HDV



Courtesy of Daimler Trucks North America

- Inability to produce costeffective thin walled ferrous castings for engine blocks, heads, and exhaust manifolds
  - Capable of achieving thickness ≤2mm
  - Capable of withstanding pressures
     ≥ 300 bars

#### Engine/Transmission Metric Synergies LDV and

#### HDV – 2025 and 2050



|                                                                              | 2010                                                                                                                          | 2025                                                                                                                                                                | 2050                                                                                                                                                                |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weight Reduction                                                             | Baseline - LDV Baseline<br>– HDV                                                                                              | 25% lighter - LDV<br>15% lighter - HDV                                                                                                                              | 40% lighter- LDV<br>20% lighter- HDV                                                                                                                                |
| Power density<br>Fossil Fuel LDV ICE<br>Fossil Fuel HDV ICE                  | LDV Baseline Midsize Car<br>-2.7L 196 HP (73.4 HP/L)<br>LDT – 5L 308 HP (61<br>HP/L)<br>15L 475HP (32 HP/L) -<br>HDV baseline | 10% augmented –LDV<br>1.5L 196 HP (132 HP/L)<br>1.0L 139 HP (132 HP/L)<br>15% augmented -LDT –<br>2.6L 308 HP (119HP/L)<br>30% augmented –HDV<br>11L 475HP (45HP/L) | 30% augmented – LDV<br>1.0L 196 HP (214 HP/L)<br>0.5L 98 HP (214 HP/L)<br>30% augmented -LDT –<br>1.6L 308 HP (192 HP/L)<br>40% augmented-HDV 9L<br>475HP (53 HP/L) |
| Efficiency<br>Waste heat recovery –<br>LDV<br>Thermal - LDV<br>Thermal - HDV | 5% recovery – LDV<br>Turbo Machinery<br>LDV Thermal Baseline<br>30% efficiency<br>42% efficiency – HDV                        | 20% recovery – LDV<br>Turbo /<br>Thermoelectric(TEs)<br>LDV - 25% improvement<br>(37% e)<br>50% efficiency- HDV                                                     | 50% recovery – LDV<br>Turbo/TEs/ Rankine Cycle<br>LDV - 50% Improvement<br>(45% e)/LD-ACE 50% e<br>60% efficiency- HDV                                              |
| Exhaust Temperatures<br>(Exhaust Valve to Turbo Inlet)                       | 870 C - LDV<br>700 C- HDV                                                                                                     | 950 C - LDV<br>800 C - HDV                                                                                                                                          | 1000 C - LDV<br>900 C - HDV                                                                                                                                         |
| Cylinder Peak Pressures                                                      | Baseline – LDV ~ 50 bar<br>190 bar - HDV                                                                                      | 75-110 bar - LDV gasoline<br>193 bar - LDV diesel<br>250 bar - HDV                                                                                                  | 130-160 bar - LDV<br>gasoline<br>200 bar - LD - HE/ACE<br>206 bar - LDV diesel<br>300 bar - HDV                                                                     |

#### Technology Gaps and Priorities for both HD and LD Vehicle Systems

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

| System                                                                                                 | BIW & Cab | Propulsion | Chassis | Closures |
|--------------------------------------------------------------------------------------------------------|-----------|------------|---------|----------|
| Joining of Multi-materials                                                                             | X         |            | Х       | X        |
| Optimized Performance<br>(including matls for<br>rotating parts, lower cost,<br>improved strength etc) |           | Х          | Х       | Х        |
| Predictive Models                                                                                      | Х         |            |         | Х        |
| Optimized Manufacturing<br>(including lower cost and<br>larger parts)                                  | Х         |            | Х       |          |
| Design Tools                                                                                           | Х         |            |         | Х        |
| Cost and availability of<br>Materials                                                                  | Х         |            |         |          |
| Corrosion                                                                                              |           |            |         | Х        |

#### Overlap in Structural Materials Limitations for LDV Body-in-white & HDV Body & Cab

**ENERGY** Energy Efficiency & Renewable Energy

Priority materials limitations for LDV



- Limited fiber reinforced polymer ductility
- Inability to meet crash requirements with magnesium
- Lack of high-strength, formable Al alloys with low processing cost
- Lack of next generation AHSS
- Limited multi-disciplinary process (e.g. Crash/Safety, etc..) for Steel, Aluminum, and Magnesium

Overlap in materials shortcomings for LDV and HDV

High cost and lack of lightweight materials

Limited knowledge of joining of dissimilar materials

Insufficient modeling and simulation engineering analysis tools for composites

Lack of low cost materials processing/ manufacturing

Inability to integrate composite parts into body-systems

# Priority materials limitations for HDV



#### Insufficient new materials

- Alloying
- Sustainable materials and resins
- Recyclability
- Corrosion resistance

#### Body-in-white/ Body & Cab Metric Synergies LDV & HDV – 2025 and 2050

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

|                                             | 2010                                          | 2025                                                                                  | 2050                                                                                            |
|---------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Weight reduction                            | Baseline of LDV & HDV                         | 40-50% lighter by cost<br>effective sustainable<br>means                              | 60-75% lighter by cost<br>effective sustainable<br>means                                        |
| Low-cost<br>manufacturing<br>for composites | 2-30 mins/part                                | 1-3 mins/part                                                                         | 1 min/part                                                                                      |
| Structural<br>modeling and<br>simulations   | Simulation based<br>(not prediction<br>based) | Durability, reliability<br>prediction capability for<br>lifecycle analysis            | Materials by design –<br>"mix material systems"<br>to predict part properties<br>in application |
| Design and performance                      | Steel-based                                   | Composite-based –<br>affordable materials with<br>standardized material<br>properties | Composite-based –<br>commodity materials                                                        |
| Recyclability                               | Reclaim < 40%<br>( no glass recovery)         | Reclaim 85%                                                                           | Reclaim 99%                                                                                     |
| Repairability                               | Mostly replacement                            | 50/50 - repair to replace                                                             | Mostly repair                                                                                   |

#### Overlap in Materials Limitations for LDV Chassis and Suspensions with HDV Chassis Structures & Components

Energy Efficiency & Renewable Energy

Chassis and Suspensions

for LDV

- Limited ability to mitigate corrosion in Mg
- Limited ability to produce casting with high integrity for both Al and Mg
- Limited infrastructure for casting High Pressure / Vacuum Casting (>2,500 ton)
- Limited ability for joining

Lack of material development including large scale manufacturing

Overlap in materials

shortcomings for LDV

and HDV

Limited capability in multi-material joining

Chassis Structures & Components for HDV



U.S. DEPARTMENT OF

ENERGY

- Limited material and assembly modeling
- Little collaboration among stakeholders in developing processes and software for optimizing vehicle systems -to the component level
- Unoptimized energy and efficiency processes

# Chassis System Metric Synergies LDV & HDV – 2025 and 2050

**ENERGY** Energy Efficiency & Renewable Energy

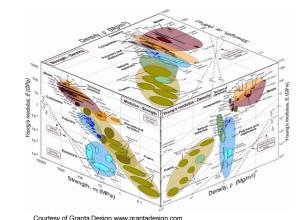
|                                                                               | 2010                                                     | 2025                                               | 2050                                                                     |
|-------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|
| Overall<br>Weight<br>Reduction                                                | Materials mostly<br>steel, Close to full<br>optimization | 20-35% lighter using advanced materials            | 50% lighter using new material<br>& integration with other<br>components |
|                                                                               |                                                          | By Chassis Sub-system                              | Alter and a second                                                       |
| Front/rear<br>cradles                                                         |                                                          | Lighter by 35%                                     | Lighter by 50%<br>(EVs, front cradle major<br>downsize)                  |
| Steering<br>knuckles                                                          |                                                          | Lighter by 25-35%                                  | Lighter by 50%                                                           |
| Brakes                                                                        |                                                          | Lighter by 50%+                                    | Lighter by up to 100%<br>(regen. braking; using motor)                   |
| Wheels/tires                                                                  |                                                          | Lighter by 20%                                     | Lighter by 50%                                                           |
| Stabilizers                                                                   |                                                          | Lighter by 50%+                                    | Lighter by 75%<br>(new composites)                                       |
| Ladder<br>frames                                                              |                                                          | Lighter by 25%                                     | Lighter by 35%<br>(CF, CF/steel hybrid)                                  |
| Springs                                                                       |                                                          | Lighter by 50%+                                    | Lighter by 50%+                                                          |
| Fuel systems /<br>exhaust<br>Background Graphic Courtesy of Daimler Trucks No | rth America                                              | Lighter by 40% (30% + 10% from 10% EV penetration) | Lighter by up to 100%<br>(all electric vehicles)                         |

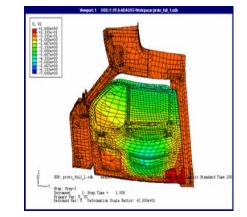
Vehicle Technologies Program

eere.energy.gov

#### Materials Limitations for LDV & HDV Closures, Fenders, and Bumpers

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy





#### Materials shortcomings for closures

• Limited capability to:

- Enduring material joints
- Model, predict, mitigate corrosion issues, especially with new lightweight materials
- Complete material database & design knowledge does not fully exist
  - Limits the design & manufacturing of novel parts with current/future materials
- Supply and affordability challenges for materials new and existing alike







Vehicle Technologies Program

#### LDV & HDV Closures, Fenders, Bumpers Material Metrics – 2025 & 2050

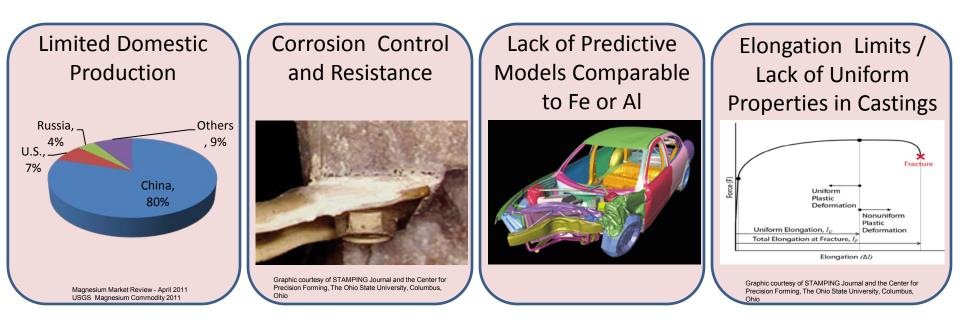
Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

|               | 2010                                                                                                              | 2025                                                                                                                                       | 2050                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Functionality | <ul> <li>10% lower weight than 2002<br/>in metal components</li> <li>Net gain in weight since<br/>2002</li> </ul> | Maintain Today's<br>Functionality                                                                                                          | Maintain Today's<br>Functionality                                                                                                          |
|               | in bumpers<br>• Premium >\$1/lb in other<br>components                                                            | <ul> <li>More than 50%<br/>weight savings</li> <li>Weight Savings at a<br/>Cost of &lt;\$1 per lb</li> <li>Small Cost Increases</li> </ul> | <ul> <li>More than 75%<br/>weight savings</li> <li>Weight Savings at a<br/>Cost of &lt;\$1 per lb</li> <li>Small Cost Increases</li> </ul> |
|               |                                                                                                                   |                                                                                                                                            |                                                                                                                                            |



eere.energy.gov


### Materials Technology Gap Priorities

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

| Material                                                           | Mg | Carbon<br>Fiber | CF<br>composites | GF<br>composites | AHSS | Al | Advanced<br>Metals –<br>(Ti, Ni) |
|--------------------------------------------------------------------|----|-----------------|------------------|------------------|------|----|----------------------------------|
| Lack of Predictive<br>Models                                       | Х  | Х               | Х                | Х                | х    | Х  |                                  |
| Optimized<br>Manufacturing<br>(lower cost)                         |    | Х               | Х                | Х                | х    | Х  | Х                                |
| Optimized<br>Performance<br>(lower cost, improved<br>strength etc) | Х  | Х               |                  | Х                | Х    |    | X                                |
| Design Tools                                                       |    | Х               |                  | Х                |      |    | Х                                |
| Raw Material Supply                                                | Х  |                 |                  |                  |      |    | Х                                |
| Multi-material Joining                                             |    |                 | Х                |                  |      | Х  |                                  |
| Damage Detection                                                   |    |                 | Х                |                  |      |    |                                  |
| Corrosion                                                          | Х  |                 |                  |                  |      |    |                                  |

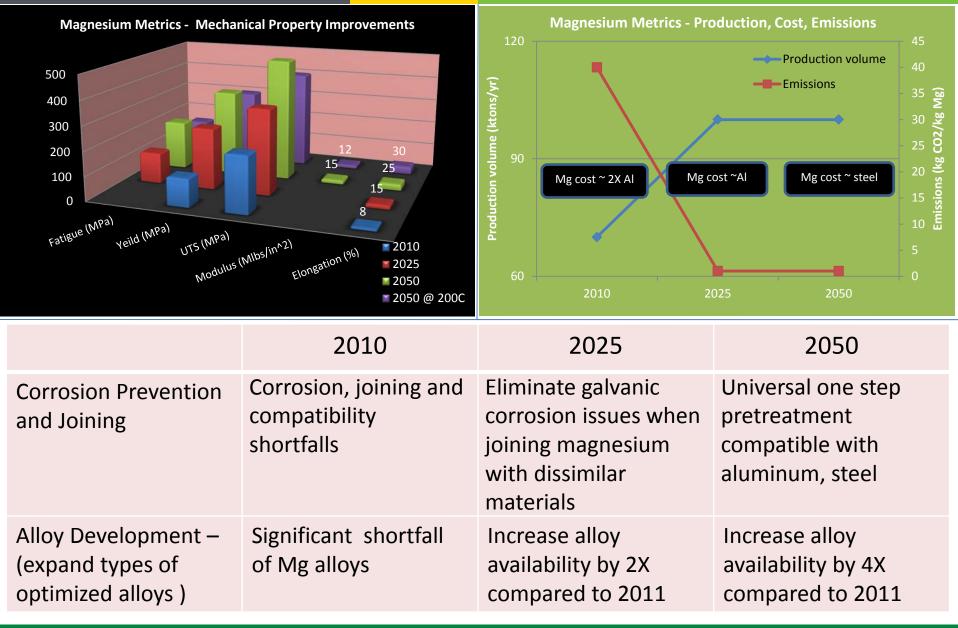
- Weight reduction potential of magnesium vehicle components (vs. conventional, steel intensive structures) ~ <u>60-75%</u>
- Barriers to pervasive use of Mg in contemporary vehicles:



U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

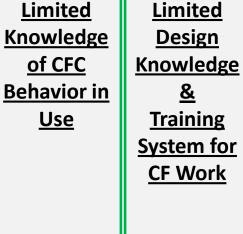

Renewable Energy

#### Magnesium Material Metrics – 2025 and 2050

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

**ENERGY** 




#### U.S. DEPARTMENT OF Energy Efficiency & Representative Workshop Output - Carbon Fiber ENERGY Renewable Energy

- Weight reduction potential of carbon fiber composite (CFC) vehicle components (vs. conventional, steel intensive structures) ~ 50-60%
- Barriers to pervasive carbon fiber (CF) use in contemporary vehicles:



- Costly alternative carbonfiber precursors
  - Insufficient knowledge on manufacturing with high cycle formability and joining
  - Low efficiency of CF conversion (energy/environmental)



Use

- S Ð י. ר ത 2
- Incomplete precursor –to-**CF-structure-property** relationships
- Inadequate predictive engineering tools for CF

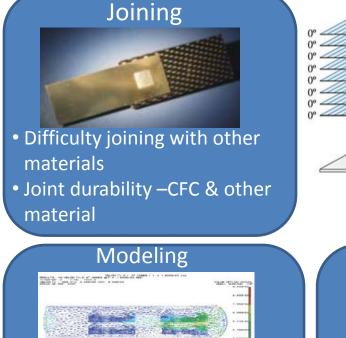
Incomplete interfacial CF

chemistry-to-composite

property relationships

#### Carbon Fiber Material Metrics – 2025 and 2050

Energy Efficiency & Renewable Energy

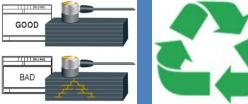

U.S. DEPARTMENT OF

| 2010                                                                                                                      | 2025                                                                                                                                                                                                                                        | 2050                                                                                                                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • Carbon Fiber Cost~ \$9/lb                                                                                               | • Carbon Fiber Cost ~ \$3/lb                                                                                                                                                                                                                |                                                                                                                                                                                       |  |
| <ul> <li>Poly acrylonitrile precursors:</li> <li>&lt;2/1 yield</li> <li>low throughput</li> <li>high emissions</li> </ul> | <ul> <li>New precursor<br/>chemistries:</li> <li>&gt;2/1 yield</li> <li>high rate conversion</li> <li>low emissions</li> <li>Precursor - 100%<br/>petroleum based</li> <li>Stable conversion at<br/>temperatures 800-<br/>1500°C</li> </ul> | <ul> <li>Precursor based on 100% recyclable materials</li> <li>100% sustainable process for making &amp; using CF materials with emissions reduced by 80% compared to 2010</li> </ul> |  |
|                                                                                                                           |                                                                                                                                                                                                                                             |                                                                                                                                                                                       |  |

#### **Representative Workshop Output - Carbon** Fiber Composites (CFCs)



- Weight reduction potential of CFCs vehicle components (vs. conventional, steel intensive structures) ~ 50-60%
- Barriers to pervasive CFC use in contemporary vehicles:




• Lack of predictive modeling capability for CFC and joints • Inadequate materials database

# Unidirectional Cross-plied

# quasi-isotropic

#### Damage Detection & Recycling



• Lack of damage detection tools and repair technology • Inadequate CFC recycling

#### Manufacturing



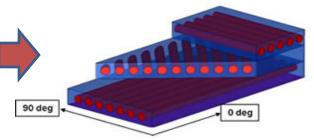
• Fiber/resin systems not optimized for manufacturing • High cost/limited supply of CF • Long cycle times



• Limited options to improve CF adhesion to matrix • Limited CF-compatible resin matrix materials

# Carbon Fiber Composites Material Metrics – 2025 & 2050

Energy Efficiency & Renewable Energy


U.S. DEPARTMENT OF

|               | 2010                      | 2025                                                                                                  | 2050                                                           |  |
|---------------|---------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Utilization   | <40K LDV/yr<br>No use HDV | 5% of vehicle mass                                                                                    | 15-25% of vehicle mass                                         |  |
| Cost          | \$12/lb                   | <\$5/lb                                                                                               | <\$2.5/lb                                                      |  |
| Modeling      |                           | Predictive with CAE & FEM                                                                             |                                                                |  |
| Design        |                           | 50% of theoretical limits                                                                             |                                                                |  |
| Raw materials |                           | Non-petroleum based materials (precursors, fibers, resins)                                            |                                                                |  |
| Joining       |                           | Joining technology for CF-CF and CF-<br>metal at cost & time ~steel design                            |                                                                |  |
| Recycling     |                           | <ul><li>100% recycled,</li><li>25% renewable precursor</li><li>25% reduced carbon footprint</li></ul> | 100% recycled<br>50% renewable precursor<br>75% reduced carbon |  |
| Repair        | 0% detection<br>0% repair | 100% detection<br>25% repair                                                                          | 100% detection<br>50% repair                                   |  |
|               |                           |                                                                                                       |                                                                |  |



Courtesy of the Oak Ridge National Laboratory, managed for the US Department of Energy, Photographer: Jason Richards.

Vehicle Technologies Program





eere.energy.gov

# Representative Workshop Output – Glass Fiber

- Weight reduction potential of GFCs vehicle components (vs. conventional, steel intensive structures) ~ <u>25-30%</u>
- Barriers to pervasive glass fiber composite (GFC) use in contemporary vehicles:
  - Limited reinforcement technologies to improve mechanical properties and durability of GFCs
  - Incomplete material property database & design knowledge
  - Modeling and simulation software is immature
  - Process cycle times are lengthy





Energy Efficiency & Renewable Energy

# Glass Fiber Composites Material Metrics – 2025 & 2050 (1 OF 2)



|                                                | 2010                                                                                         | 2025                                  | 2050                                                                                                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|
| Material<br>Property<br>Database &<br>Modeling | Baseline not comprehensive for all material properties                                       | database                              | Predictive modeling &<br>correlation with field<br>data                                                |
| Stiffness                                      | <ul> <li>Stiffness dependent on</li> <li>Variables ranges are large</li> </ul>               | 30% improvement in material stiffness | Same stiffness as<br>Aluminum                                                                          |
| Appearance                                     | <ul> <li>Class 'A' appearance possible</li> <li>Low fill levels, stiffness ~steel</li> </ul> | •                                     | Same as 2050                                                                                           |
| Recycling,<br>Chemical &<br>Energy<br>Recovery | <ul> <li>Typically no recycling</li> <li>Potential exists</li> </ul>                         | recyclability & recovery              | Eliminate LDV & HDV-<br>related landfill load<br>composites/plastics                                   |
| Fiber<br>Characteristics                       | Processes tend to break fibers                                                               | fiber characteristics                 | <ul> <li>Aluminum-like<br/>thermoplastics</li> <li>Low CLTE &amp; isentropic<br/>properties</li> </ul> |

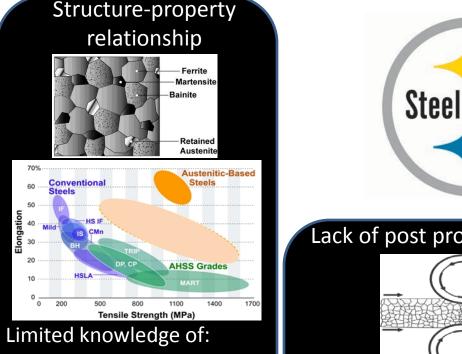
# Glass Fiber Composites Material Metrics – 2025 & 2050 (2 OF 2)

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

|                                                                            | 2010                                 | 2025                                                             | 2050                                                             |
|----------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Joining of<br>Composites                                                   | Many methods, few standards.         |                                                                  | Continued technology –<br>methods & standards-<br>advancement    |
| System Cost<br>Parity                                                      | SMC \$1-2 / lb                       | Parity with Steel                                                | Same as 2025                                                     |
| Reduced Part<br>Weight via<br>Design<br>Optimization or<br>Reduced Density |                                      | 30% part weight reduction<br>relative to composite<br>components | 50% part weight<br>reduction relative to<br>composite components |
| Regulatory<br>Standards -VOC<br>emissions                                  | Baseline today's standards           | 50% from baseline                                                | 95% from baseline                                                |
| Process                                                                    | Shrink/Warp due to fiber orientation | Eliminate warp                                                   | Continued advancement                                            |

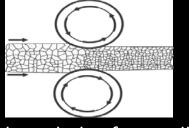
# Cycle Time Metrics for GFCs


U.S. DEPARTMENT OF ENERGY Re

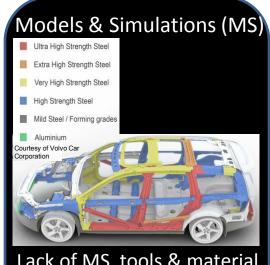
Energy Efficiency & Renewable Energy

|                                            | 2010    | 2025   | 2050    |
|--------------------------------------------|---------|--------|---------|
| Liquid Thermoset<br>Resin/Continuous Fiber | 10 min  | <5 min | <2min   |
| SMC Thermosets                             | 1.5 min | <1 min | 30 sec  |
| Thermoplastics                             | ~1 min  | 30 sec | <10 sec |
| Metal Stamping                             | 10 sec  | -      | -       |

#### Representative Workshop Output – Advanced High Strength Steel (AHSS)


- Weight reduction potential of AHSS vehicle components (vs. conventional, steel intensive structures) ~ <u>15-25%</u>
- Barriers to pervasive AHSS use in contemporary vehicles:




- grade µstructure with improved strengthductility relationship
- impact with fillers: in situ nanoparticles, whiskers



#### Lack of post processing knowledge



- Limited knowledge from rolling and forming
- Inability to mitigate corrosion, limit galvanic bonding, bond steel sheets



Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

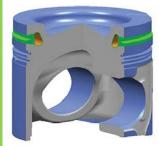
Lack of MS tools & material parameters for predicting:

- Properties utilizing physics based models
- Microstructures
  - Morphology & properties
  - Link to failure modes
- Manufacturability & performance

#### Advanced High Strength Steel Material Metrics – 2025 & 2050

U.S. DEPARTMENT OF

|                            | 2025                                                                         | 2050                                                                         |
|----------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                            |                                                                              | • 2,500-3,000 MPa UTS<br>• 20% elongation                                    |
| Density                    | 5% density reduction                                                         | 10% density reduction                                                        |
| Modulus                    | 10% increase                                                                 | 20% increase<br>C260BD, HC260LAD, HC260X(D)<br>C300BD, HC300LAD, HC300X      |
|                            | <ul> <li>Reduce gauge to 0.5mm</li> <li>Increase width to 1,800mm</li> </ul> | <ul> <li>Reduce gauge to 0.4mm</li> <li>Increase width to 1,800mm</li> </ul> |
| Reliable joining processes |                                                                              | Seamless 3-D construction of multi-material structures                       |
|                            | in correlation                                                               | Models achieve 90% confidence<br>in correlation                              |


#### Representative Workshop Output – Aluminum & Aluminum Matrix Composites

- Weight reduction potential of Aluminum vehicle components (vs. conventional, steel intensive structures) ~ <u>40-60%</u>
- Barriers to pervasive Aluminum use in contemporary vehicles:



- Inadequate predictive modeling of joint performance
- Inadequate knowledge of how to optimize integrity of joints
- Lack of adhesives for multimaterial joining

#### Modeling & Simulations



- Lack of tools for design and CAE to optimize performance
- Lack of models to predict failure
- Limited tools to optimize manufacturing processes
- Limited database for public reference

#### Inability to Cast High Quality Complex Parts

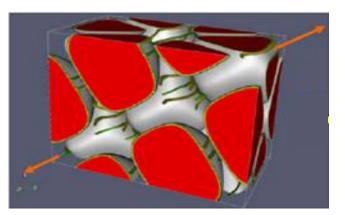
Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF



- Inability to cast high performance parts reliably
- Need improved properties for specific applications

Vehicle Technologies Program


#### Aluminum Material Metrics – 2025 & 2050

**ENERGY** Energy Efficiency & Renewable Energy

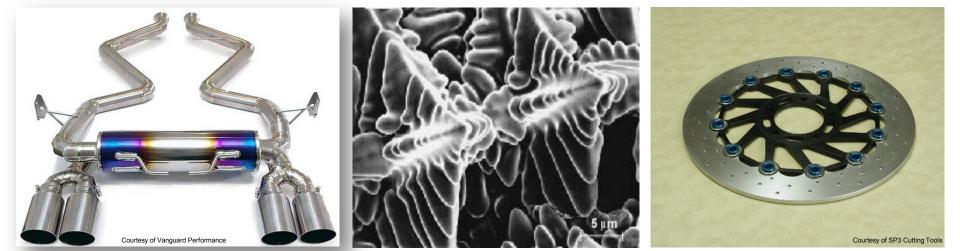
|                                                                                            | 2010                                                                                                            | 2025                                                                                                                         | 2050                                                                                                                          |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Mechanical Properties<br>(strength, fatigue, creep,<br>ductility, corrosion<br>resistance) | Current standards for<br>cast and wrought<br>products                                                           | 40% improvement                                                                                                              | 200% improvement                                                                                                              |
| Aluminum joining with                                                                      | • Slow, expensive,                                                                                              | 50% less fasteners,                                                                                                          | Near zero use of                                                                                                              |
| dissimilar materials                                                                       | <ul> <li>Can't be modeled</li> </ul>                                                                            | easier to model                                                                                                              | fasteners                                                                                                                     |
| Parts Cost – inability to<br>cast complex shapes<br>reliably                               | Not cost competitive                                                                                            | 25% lower                                                                                                                    | 40% lower                                                                                                                     |
| Design Techniques                                                                          | <ul> <li>Incomplete<br/>understanding of<br/>system properties;</li> <li>Significant<br/>prototyping</li> </ul> | 50% reduction in<br>design time                                                                                              | Zero prototyping                                                                                                              |
| Recyclability                                                                              | <ul> <li>90% overall</li> <li>0% high<br/>performance alloys</li> </ul>                                         | <ul> <li>90% overall</li> <li>50% of high<br/>performance alloys<br/>being reused for high<br/>performance alloys</li> </ul> | <ul> <li>90% overall</li> <li>100% of high<br/>performance alloys<br/>being reused for high<br/>performance alloys</li> </ul> |

- Weight reduction potential of advanced materials vehicle components (vs. conventional, steel intensive structures) ~ <u>40-60%</u>
- Barriers to pervasive advanced materials use in contemporary vehicles:
  - Limited Near-Net-Shape for mass production of titanium parts
  - Insufficient tolerance to temperature extremes (-40 1050°C) for advanced materials, including superalloys and MMCs
  - Lack of mass production capability for titanium raw materials
  - Lack of processing capability for intricate component shapes
  - Lack of low temperature ductility for MMCs
  - Inadequate design database for advanced materials





IENER


Energy Efficiency &

**Renewable Energy** 

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

|                                         | 2010                          | 2025                                                                                              | 2050                            |
|-----------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|
| Titanium – Cost vs.<br>Performance      | Cost Prohibitive              | 50% reduction from<br>current levels                                                              | Parity with aluminum<br>alloy   |
| Nickel alloys - Cost vs.<br>Performance | 4X cost of stainless<br>steel | <ul> <li>2X cost of stainless<br/>steel</li> <li>Temperature<br/>capability ≥ 1050° C.</li> </ul> | 1.5X cost of stainless<br>steel |



Mel M. Schwartz, Edward M. Breinan, K. K. Wang, William F. Gale, S. S. Babu, J. M. Vitek, S. A. David, "Welding and cutting of materials," in AccessScience, @McGraw-Hill Companies, 2008, http://www.accessscience.com



### Thank You!

# Questions?

www.vehicles.energy.gov

Carol Schutte, PhD Team Lead for Materials Technology Vehicle Technologies Program Email: carol.schutte@ee.doe.gov Will Joost Materials Engineer Vehicle Technologies Program E-mail: william.joost@ee.doe.gov