

Proudly Operated by Battelle Since 1965

Aerodynamic Lightweight Cab Structure Components

Mark T. Smith Pacific Northwest National Laboratory Richland, WA USA

2012 DOE Annual Merit Review May 17, 2012

PNNL Contributing Staff Members: Elizabeth Stephens and Curt Lavender

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID# LM60

Outline

- **Project Overview**
- Relevance
- Approach
- Milestones
- Technical Approach
- Results and Accomplishments
- Summary
- Publications/Presentations

Project Overview

Project Timeline

- Start: 10/01/2010
- Finish: 9/30/2013

Budget

- Total project funding
 DOE \$1220K
- FY11 Funding \$375K
- FY12 Funding \$365K
- FY13 Funding \$480K

PACCAR and Magna SCFI (Stronach Centre For Innovation) providing 50% cost share as in-kind materials and effort

Barriers

- Suitable aluminum alloys meeting strength and durability requirements for heavy duty trucks lack formability
- Forming and manufacturing process must be compatible with PACCAR cab assembly and finishing methods
- Moderate production volumes limit tooling options

Partners

- PACCAR Technical Center
- Novelis Aluminum
- Magna International Stronach Centre for Innovation (SCFI)

Relevance

- The objective of the project is to develop and demonstrate a thermo-mechanical forming process that will allow a standard aluminum sheet alloy to be formed into complex, aerodynamic shapes and components, reducing component weight by up to 40%
- The development of the hot/cold forming process for aluminum sheet will allow commercial truck designers to replace heavier glass fiber reinforced plastics and sheet steel in complex-shaped components while meeting required strength, durability and finish requirements

Approach

Complete tensile test-based development of hot/cold forming process sequence demonstrating enhanced tensile ductility and >175 MPa tensile strength for 6000-series sheet alloy. Completed - October 2011

Complete manufacturing process demonstration of Hot/room temperature aluminum sheet forming using prototype 3-dimensional component tooling (March 2012). Completed - February 2012

Project Background

- Focused on Class 8 Truck cab components that provide weight savings and contribute to aerodynamic optimization
- The Heavy Truck industry can't amortize stamping dies due to lower production volumes
 - Built-up structures from generic shapes
 - Steel for hard to form body components (single stamping die/weight penalty)
 - SMC for styling, aerodynamic body and hood, and low tooling costs (with weight penalty)
- Aluminum can provide >40% weight savings compared to SMC and steel but:
 - Lacks formability required for aerodynamic panels
 - Must be compatible with established manufacturing and finishing processes

Material Characterization and Process Validation – Task Plan

Task 1.1

- Establish as-received (-T4) properties and basic E-coat HT response
- Determine optimum hot forming temperature and formability limits (maximum uniform elongation)
- Determine E-coat HT response for hot formed specimens and optimize
- Simulate RT preforming to strain level (10%) + hot forming additional 10% + E-coat HT
- Simulate hot preforming to strain level (10%) + RT forming additional 10% + E-coat HT

< Results based on optimum tensile "formability" and tensile properties>

Hot Gas Pre-Forming / RT Final Forming Process Schematic

Pacific Northwest

Room Temp. Pre-Forming / Hot Gas Forming Process Schematic

As Received Properties for Batch 1 & 2 Novelis X608 Sheet

Proudly Operated by Baffelle Since 1965

Material ID	Condition	0.2% Yield Strength (MPa)	Ultimate Tensile	Elongation (%)
		Suchgui (Mira)	Suengui (Ivii a)	
6XXX-1	As-Received	120	210	22.1
	(AR)	120	210	22.1
6XXX-1	AR + PB	165	241	197
		105	241	10.7
6XXX-1	AR + 5%CF +	207	255	20.0
	PB	207	233	20.9
6XXX-2	As-Received	125	220	22.6
	(AR)	155	220	23.0
6XXX-2	AR+PB	104	260	21.2
		184	200	21.2
6XXX-2	AR + 5%CF +	220	274	27.1
	PB	230	274	27.1

AR = As-Received (-T4); PB = Paint Bake (180 C, 20 minutes); CF = Cold Form (Room Temperature Strain)

Test results for shoulder-loaded SPF tensile specimen. Additional comparison tests conducted with ASTM standard and sub-sized E8 specimens have been conducted

Summary of simulated forming test results for hot and cold strained specimens. Results for Novelis 6XXX-2 sheet

Proudly Operated by Battelle Since 1965

Specimen Group	Forming Condition	Temp. (C)	Hot Strain (%)	Cold Strain (%)	0.2% Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Total Elongatio n (%)
29	HF/CF	450/RT	19.89	4.17	141.9	184.4	37.89
26	HF/CF	500/RT WQ	20.11	4.06	179.2	239.7	41.76
31	HF/CF	540/RT AC	29.38	4.36	201.0	249.0	45.91
30	HF/CF	540/RT WQ	28.92	4.27	223.1	262.4	45.80
15	CF/HF	RT/350	5.31	4.90	109.3	158.0	21.37
17	CF/HF	RT/540 WQ	13.23	4.76	104.0	183.1	31.46

Notes: HF/CF = Hot Form then Cold Form; CF/WF = Cold Form then Hot Finish Form; WQ = Water Quench (from HF step); AC = Air Cool (from HF step). All specimens received standard paint bake (180 C/20 min.) prior to room temperature tensile test.

Proudly Operated by **Battelle** Since 1965

Task 1.2

- Design and fabricate tooling for 3-D component
- Demonstrate process sequence for three candidate forming methods:
 - 1. RT preform blank followed by elevated temp final forming
 - 2. Hot preform blank followed by RT final forming
- Evaluate die lubricants, surface, E-coat process for formed component

< Validate feasibility of forming process sequence and ability to meet strength, dimensional, surface finish and E-coat/paint bake response for simulated component>

- Design of 3-D component for forming process development and validation
 - Non-proprietary component that incorporates features of aerodynamic aluminum cab component
 - Component configuration requires formability that exceeds room temperature stamping capability
 - Designed to demonstrate hot forming application using standard alloy (common to balance of cab)
 - Requires compatibility with strength requirements, E-Coat surface treatment, fatigue performance

3-D Component Model Features

Rigid Die (Half model)

Summary of Cold Forming Limit Analysis

Aluminum Tray Forming Results – Phase I

Selected hot preform with room temperature final forming using second lot of X608 sheet material (nominal 1.3 mm thickness)

- Hot form at 500 C with air cool and with water quench
- Hot form at 540 C with air cool and water quench
- Two trays per condition
- Fully-constrained forming of sheet into 38 mm deep tray section requires 50 to 100% transverse elongation of sheet
- Forming steps performed without edge constraint/drawbead control
- Sheets lubricated with boron nitride (hot preforming step) and Vanish water-based stamping lubricant (room temperature finish forming)
- All trays heat treated for simulated paint bake cycle (180 C/20 minute) after final forming
- Formed trays sectioned for
 - Six longitudinal tensile bars from the bottom of tray
 - Samples provided to PACCAR Tech Center for surface finish, E-coat and adhesive bonding test and characterization

Hot Preformed Tray Prior to Room Temperature Final Forming

Proudly Operated by Battelle Since 1965

Picture of bottom of hot preformed X608 aluminum tray showing draw-in of sheet

Room Temperature Final Formed Tray

Proudly Operated by Battelle Since 1965

Picture of bottom of room temperature final formed X608 aluminum tray showing additional material draw-in of the sheet

Room Temperature Final Formed Tray

Proudly Operated by **Battelle** Since 1965

Picture of top of room temperature final formed X608 aluminum tray

Room Temperature Tensile Test Results for Hot/RT Formed Trays and Baseline Sheet

Proudly Operated by Battelle Since 1965

Forming Conditions	0.2% Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Elongation (%)
HF 500 C/AC + CF + PB	119.7	210.3	22.9
HF 500 C/WQ + CF + PB	121.4	211.2	22.8
HF 540 C/AC + CF + PB	140.8	241.8	22.9
HF 540 C/WQ + CF + PB	144.8	245.0	22.8

HF = Hot Form; CF = Cold Form; AC = Air Cool; WQ = Water Quench; PB = Paint Bake (180 C for 20 min.)

Aluminum Tray Forming Results – Technical Accomplishments and Progress

- Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965
- Tensile-based forming process demonstrated high levels of uniform deformation with excellent retained ductility and yield strengths
- Forming experiments focused on hot preforming at 500 to 540 C, followed by room temperature final stamping
- The 3-D tray component that was formed can not be formed in 6000series sheet at room temperature without significant tears and fractures
- Because of edge draw-in, the actual total strain (hot and RT strain) in the finished trays was generally below 10%
- Tensile properties of the formed trays fall below the tensile properties of the as-received sheet material, but retain excellent ductility
- Effects of hot forming temperatures on surface finishing, coating and adhesive bonding is under evaluation (PACCAR)

24

Aluminum Tray Forming Results – Technical Accomplishments and Progress

- A second phase of forming experiments is underway where the sheet material will undergo significantly higher hot preform strains
- Sheet material used for tray forming was held in freezer, but is beyond recommended shelf life for natural aging
- Discussions have been initiated with Magna SCFI on selection and optimization of the forming process to meet production requirements
- PACCAR and Magna SCFI are evaluating potential truck cab components for demonstration of forming process

Collaboration

- PACCAR Technical Center
 - Principal industry partner contributing component design, design requirements, material specifications, assembly and testing
- Magna International Tier 1 supplier to automotive and commercial vehicle OEM's
- Novelis Aluminum supply and specification of aluminum sheet materials

- This is a project with PNNL, PACCAR Tech Center, Novelis Aluminum and Magna SCFI collaborating
- Project is addressing a key challenge of reducing truck cab component weight by >40% through application of aluminum aerodynamic panels in place of steel and SMC
- Warm/cold and cold/warm forming processing sequences have been demonstrated using tensile specimen-based test methods
- Demonstration of a basic production capable warm/cold forming process using a 3-D tool has been completed in Phase 1 forming trials and process optimization trials are underway
- Tensile properties of the formed 3-D trays are somewhat below target goals, and Phase 2 forming demonstrations will focus on generating higher hot and cold strains in the formed materials