

Energy Efficiency & Renewable Energy

## Overview of the Advanced Combustion Engine R&D

#### Gurpreet Singh Team Leader

#### Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy

Plenary Session - 2012 Annual Merit Review and Peer Evaluation Meeting DOE Vehicle Technologies Program and Hydrogen and Fuel Cells Program Washington, DC May 14-18, 2012



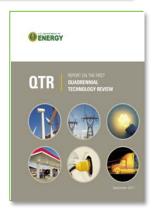
#### Advanced Combustion Engine Team

Ken Howden Roland Gravel John Fairbanks

## Opportunity for Increased Internal Combustion Engine Efficiency

ENERGY Energy Efficiency & Renewable Energy

Increasing the efficiency of internal combustion engines (ICEs) is one of the most promising and cost-effective approaches to improving the fuel economy of the U.S. vehicle fleet in the near- to mid-term.


"The performance, low cost, and fuel flexibility of ICEs makes it likely that they will continue to dominate the vehicle fleet for at least the next several decades. ICE improvements can also be applied to both hybrid electric vehicles (HEVs) and vehicles that use alternative hydrocarbon fuels." DOE QTR 2011<sup>1</sup>

"...The internal combustion engine will be the dominant prime mover for light-duty vehicles for many years, probably decades ..." NRC Report 2010<sup>2</sup>

"The EIA 2011 reference case scenario projects that even by 2035, **99% of light-duty vehicles sold will have ICEs**; heavy trucks will be predominantly ICE-powered." EIA AEO 2011<sup>3</sup>

<sup>2</sup> Review of the Research Program of the FreedomCAR and Fuel Partnership: 3rd Report, NRC 2010

<sup>3</sup> Energy Information Agency, Annual Energy Outlook 2011



DOE 2011



<sup>&</sup>lt;sup>1</sup> Quadrennial Technology Review, DOE 2011

## Advanced Combustion Engine R&D

**ENERGY** Energy Efficiency & Renewable Energy

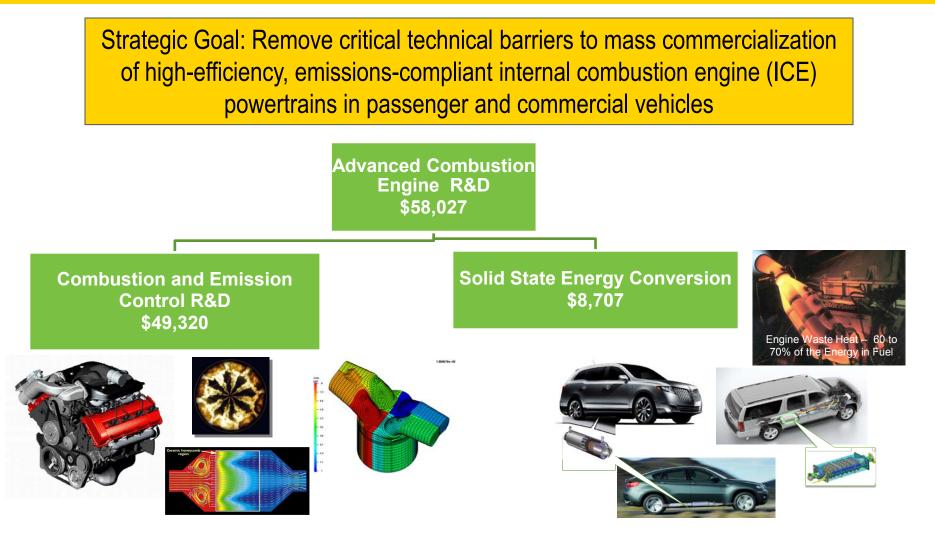
Strategic Goal: Reduce petroleum dependence by removing critical technical barriers to mass commercialization of highefficiency, emissions-compliant internal combustion engine (ICE) powertrains in passenger and commercial vehicles

#### **Primary Directions:**

- Improve ICE efficiency through advanced combustion strategies
- Develop aftertreatment technologies
- Explore waste energy recovery with mechanical and advanced thermoelectric devices

#### **Performance Targets**

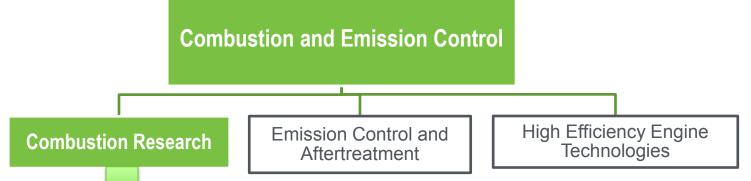
|                                    | Light-Duty      |                 | Heavy-Duty       |                  |
|------------------------------------|-----------------|-----------------|------------------|------------------|
|                                    | 2010            | 2015            | 2015             | 2018             |
| Engine brake<br>thermal efficiency | 45%             |                 | 50%              | 55%              |
| Powertrain cost                    | < \$30/kW       |                 |                  |                  |
| NOx & PM<br>emissions              | Tier 2,<br>Bin5 | Tier 2,<br>Bin2 | EPA<br>Standards | EPA<br>Standards |
| Fuel economy<br>improvement        |                 | 25 – 40%        | 20%              | 30%              |



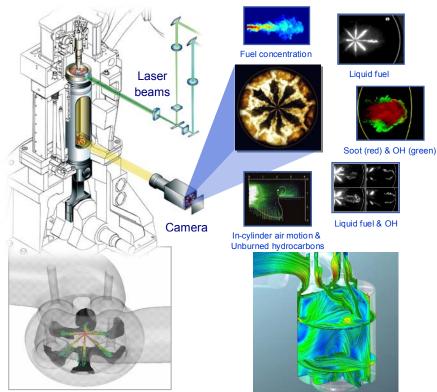

## Advanced Combustion Engine R&D: FY 2012



Energy Efficiency & Renewable Energy


Increasing engine efficiency is one of the most cost-effective approaches to increasing fuel economy



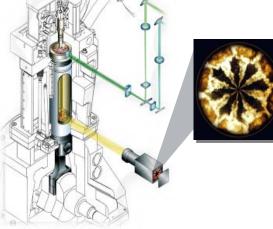

## Combustion and Emission Control R&D

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



- Explore low-temperature combustion strategies to achieve higher engine efficiencies with near-zero emissions of NOx and PM.
- Develop greater understanding of engine combustion and in-cylinder emissions formation processes.
- Develop science-based, truly predictive simulation tools for engine design




Engine Simulation

### Advanced Engine Combustion R&D Collaborations (MOUs and Working Groups)

 <u>Advanced Engine Combustion Memorandum of Understanding (MOU)</u>, led by SNL, with 10 auto/engine and 5 energy companies, 6 natl. labs, and 5 universities *carries fundamental combustion research (light- and heavy-duty engines) to products.*



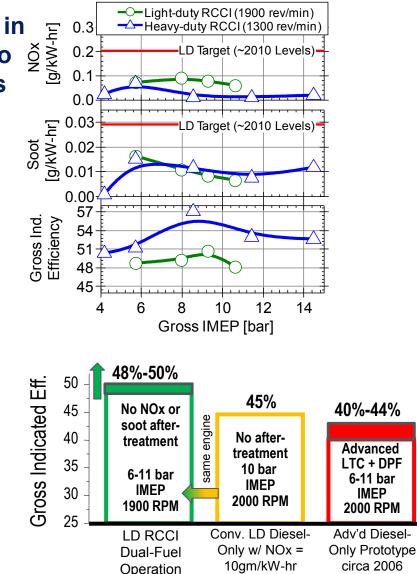


Energy Efficiency & Renewable Energy

- SC/BES and EERE/VTP have a long and productive history of collaboration on increasing engine efficiency.
- Joint workshop on <u>Pre</u>dictive <u>Simulation</u> of <u>Internal Combustion Engines</u> (PreSICE) for improved fuel spray models and simulation of stochastic processes in engines.
- Co-funding Combustion Research Computational and Visualization facility at Sandia/Livermore

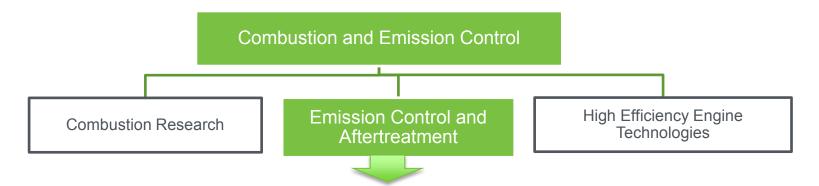


U.S. DEPARTMENT OF

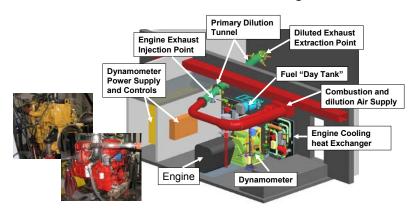

Combustion Research Computational and Visualization facility

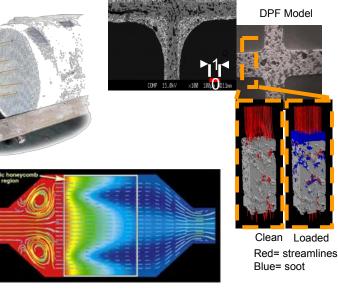
#### Reactivity Controlled Compression Ignition (RCCI) in Heavy- and Light-Duty Engines (UW, SNL, ORNL)

Energy Efficiency & Renewable Energy


#### Dual-fueling (with gasoline and diesel fuel) in laboratory engines demonstrate potential to increase efficiency with very low emissions

- Heavy-duty RCCI has potential for 20% efficiency improvement with low engine-out NOx and soot compared to conventional diesel with full aftertreatment.
- Light-duty RCCI can improve passenger vehicle fuel economy by 50 to 75 percent
  - indicated efficiencies of 48-50% are possible over a wide load range.
  - engine NOx and soot are very low, suggesting no after-treatment is needed. An oxidation catalyst may be required to control CO and HC.
  - peak pressure rise rates (ringing intensity) are easily controlled, even at the highest loads.





# Combustion and Emission Control R&D **ENERGY**

Energy Efficiency & Renewable Energy



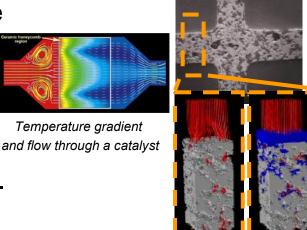
- Develop more efficient approaches for reducing NOx and PM in exhaust.
- Reduce energy penalty and cost of emission control systems
- Ensure no adverse impacts on human health from exposure to emissions from these new technologies





## CLEERS\* Working Group Supports DOE Advanced Engine Emission Control Research

- Promotes development of improved computational tools for simulating realistic full-system performance of advanced engines and associated emissions control systems
  - Emphasis on engine-aftertreatment system efficiency.
  - Integration with advanced combustion processes.
  - Identification of new catalyst materials to reduce need for precious metals (i.e., costs).
- Coordinated by subcommittee of industry, government, and academic representatives.
  - Annual workshops and monthly focus group teleconferences.
  - CLEERS website (<u>www.cleers.org</u>) includes data and forum for model and data exchange.


\*<u>C</u>rosscut <u>L</u>ean <u>E</u>xhaust <u>E</u>missions <u>R</u>eduction <u>S</u>imulation

Energy Efficiency &

**Renewable Energy** 

U.S. DEPARTMENT OF

**ENERGY** 





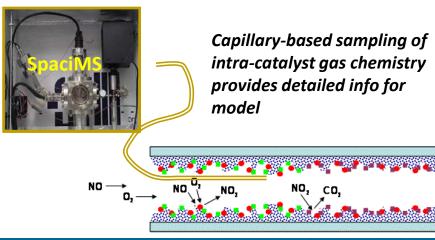
Red= streamlines Blue= soot

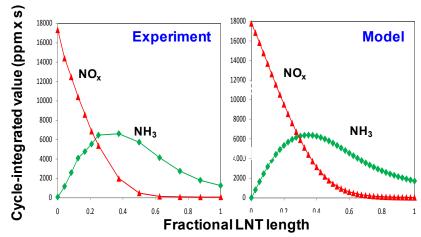
Loaded



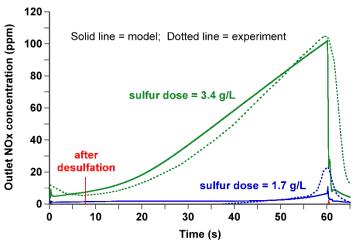
Improved Lean  $NO_x$  Trap Models Predict  $NH_3$  Formation and Sulfur Impacts on Performance (SNL,ORNL)

# U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy


#### Motivation:

 Understanding lean-NOx Trap (LNT) chemistry at a fundamental level will help in optimizing catalyst formulation and usage, enabling lower cost of fuel-efficient lean-burn engines.


#### **Results:**

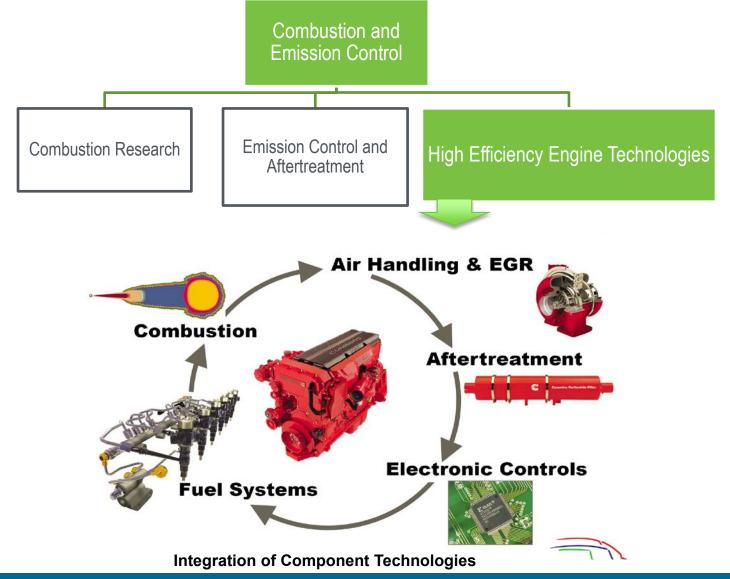
- Catalyst chemistry model improvements:
  - NH<sub>3</sub> formation in LNT (slip reduction, LNT+SCR)
  - Sulfation and deSulfation of LNT





Measured and predicted  $NH_3$  formation inside LNT catalyst during regeneration. Needed for reduced  $NH_3$  slip and  $NH_3$  utilization in LNT+SCR strategy.




Predicted reduction of NOx trapping efficiency by sulfur poisoning and its reversal via high-temperature desulfation under rich conditions.

#### 10 | Vehicle Technologies Program

## Combustion and Emission Control R&D

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy





Energy Efficiency & Renewable Energy

Develop and Demonstrate System Level Technologies to Improve Fuel Economy

#### □ Heavy-Duty Class 8 Trucks

- 20% improvement in engine brake thermal efficiency (50% BTE)
- 50% improvement in freight efficiency (tonmiles/gallon)
- Modeling and analysis for pathway to 55% brake thermal efficiency

#### Light-Duty Vehicles

- 25% fuel economy improvement for gasoline engines over baseline\*
- 40% fuel economy improvement for diesel engines over baseline\*

\*Baseline is state-of-the-art port-fuel injected gasoline engine













# Solid State Energy Conversion

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

By 2015, **increase fuel economy** of passenger vehicles by at least 5% with thermoelectric generators that convert waste heat to electricity

Solid State Energy Conversion



Engine Waste Heat – 60 to 70% of the Energy in Fuel



#### TEG integrated into the Lincoln MKT

• Develop advanced thermoelectric systems that convert energy from the engine exhaust waste heat directly to electricity for improved vehicle fuel economy.

# Competitively selected cost-shared 2<sup>nd</sup> Gen TEG projects:

- > Amerigon
- » General Motors
- » GMZ Energy



National Science Foundation Directorate for Engineering Division of Chemical, Bioengineering, Environmental and Transport Systems

 NSF and DOE/VTP MOU on costcompetitive automotive thermoelectric materials development at universities (with industry and national lab partners) (\$4.5M each for three years)



Energy Efficiency & Renewable Energy

# Gurpreet Singh Team Leader <u>gurpreet.singh@ee.doe.gov</u>

# Web site: <a href="http://www.eere.energy.gov/vehiclesandfuels">http://www.eere.energy.gov/vehiclesandfuels</a>