

Advanced Technology Vehicle Lab Benchmarking – Level 1

2012 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15, 2012

> Henning Lohse-Busch - Principal Investigator Michael Duoba - Presenter

Argonne National Laboratory

Project ID # VSS030

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Benchmarking at ANL started in 1998
- FY12 Completed Testing
 - Sonata HEV
 - Volt PHEV
 - Leaf BEV
 - Civic Prototype (Pb-Acid Battery)
- FY12 and FY13 Test Vehicles
 - Conv: Civic CNG, Jetta TDI
 - HEV: Infiniti M35h, Regal e-assist
 - PHEV: Cmax Energi, Prius PHEV
 - BEVs: Focus, Mitsubishi i

Budget

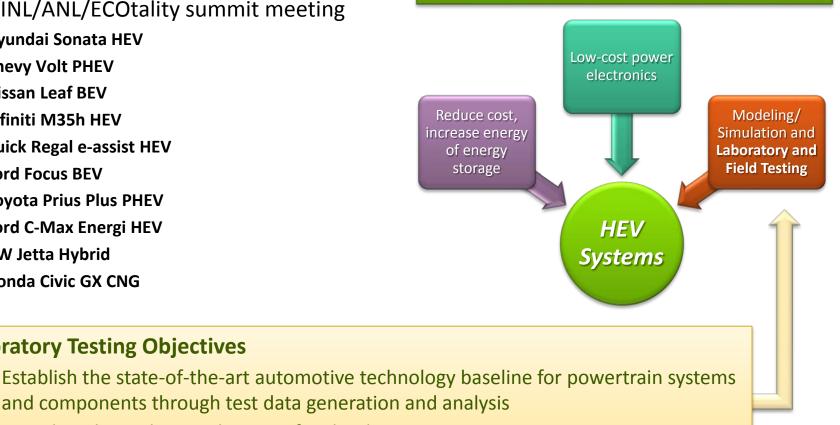
- 2012FY \$600 k
- Other Leveraged DOE Projects (separate funding)
 - Codes and Standards test support
 - TADA (OEM PHEV)
 - Mass Impact Study
 - Thermal Evaluations

- **DOE strategic goals/barriers addressed:**
 - Cost
 - New, lower-cost Sonata HEV design
 - Lack of Standardized Testing Protocols
 - Validating BEV test procedures
 - Validated PHEV test procedures
 - Constant advanced in technology
 - Data generation and benchmarking recent mass-produced BEV and PHEV.
 - New HEVs compared to previous models

Partners:

- AVTA (Advanced Vehicle Technology Activity): DOE, INL, ANL, ECOtality
- DOE, National Laboratories, USCAR,
 OEMs, Suppliers, Vehicle Competitions

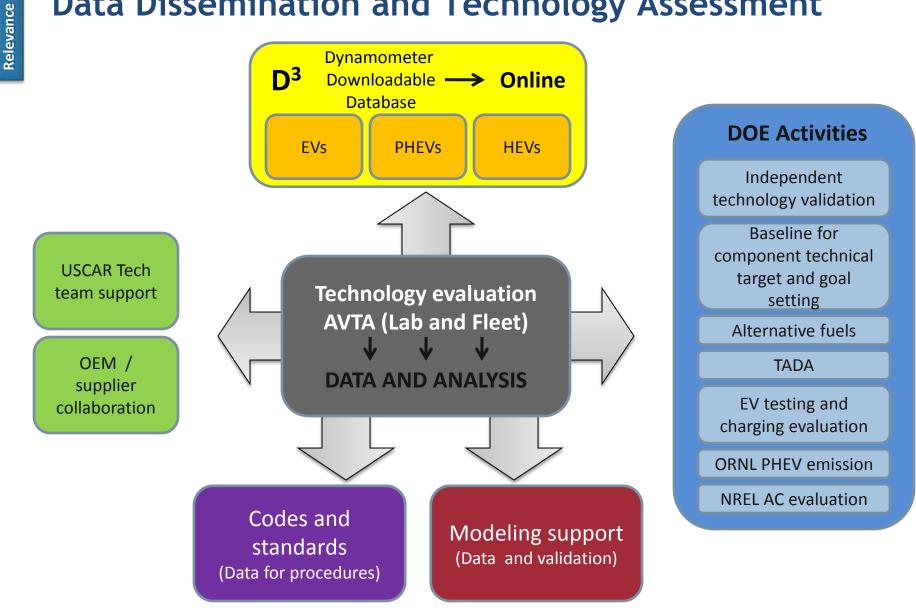
Three Components of DOE's HEV Systems Program


Level 1 benchmark vehicles decided at DOE/INL/ANL/ECOtality summit meeting

- Hyundai Sonata HEV
- **Chevy Volt PHEV**
- **Nissan Leaf BEV**
- Infiniti M35h HEV
- **Buick Regal e-assist HEV**
- **Ford Focus BEV**
- **Toyota Prius Plus PHEV**
- Ford C-Max Energi HEV

Laboratory Testing Objectives

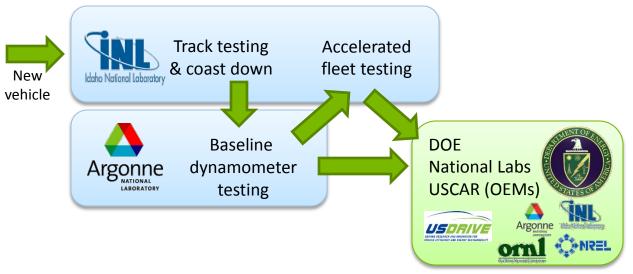
- VW Jetta Hybrid
- Honda Civic GX CNG


"VTP is advancing the large-scale, costcompetitive production of the next generation of electric-drive vehicles through three complementary component-and system-level technology pathways:"1

- Provide independent evaluation of technology •
- Generate data to support target creation and hardware/model validation ۲

¹ "Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments," DOE/GO-102010-3164, December 2010

Data Dissemination and Technology Assessment



"Knowing how good you are requires an accurate picture of how good everybody else is"

4

Well-Established and Proficient Testing Approach Adjusted to Individual Vehicles

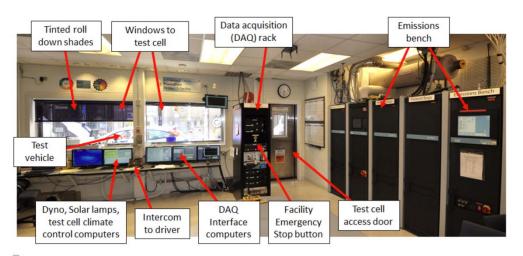
Advanced Vehicle Testing Activity (AVTA) Process:

The vehicle benchmark activity has been refined during the past decade. This results in:

- Continuous improvement of testing procedures
- Standard test plan including instrumentation and drive cycles (adjusted for individual vehicles)
- Advanced and unique facility and instrumentation
- Significant knowledge of testing and advanced vehicles

Wide range of vehicle technologies tested

Powertrains


- Conventional
- Hybrid Electric (HEV)
- Plug-in HEV (PHEV)
- Battery Electric (BEV or EV)
- Fuel Cell Vehicle

Alternative fuels

- Hydrogen
- Ethanol, Butanol
- Diesel (Bio, Fisher-Tropsch)

Dynamometer Benchmarking Testing Tools and Approach

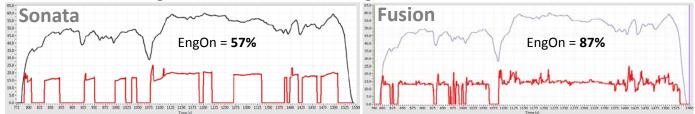
- Vehicle-level testing
 - Energy consumption (fuel + electricity)
 - Emissions
 - Performance
 - Vehicle operation and strategy
- Drive cycles and test conditions
 - "5-Cycle" tests
 - Research testing at other conditions
- Powertrain systems data collection
 - Level 1 = non-intrusive, vehicle-level
 - CAN-decoded data, speeds, thermocouples

APRF

Advanced Powertrain Research Facility

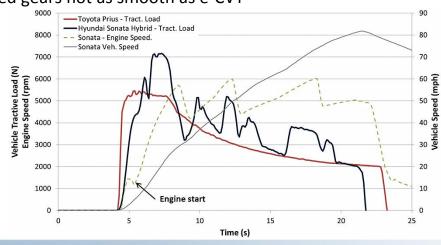
Objective: The right tools for the task

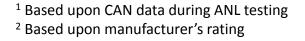
- Two dynamometer cells
- Custom DAQ, flexible, moduledriven, used in both cells
- 5-Cycle compliant (+)



Sonata HEV Benchmark Testing

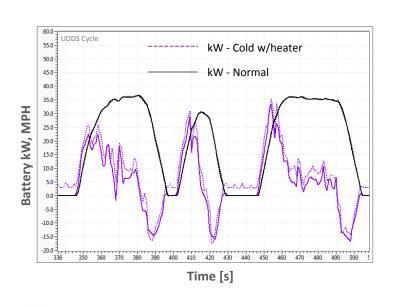
- First generation of recent "P2" hybrids
- Sonata Motors: 8 kW + 30 kW = 38 kW
- Fusion Motors: 58 kW¹ + 78 kW² = 136 kW

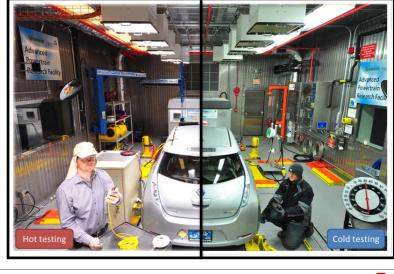

Advantages

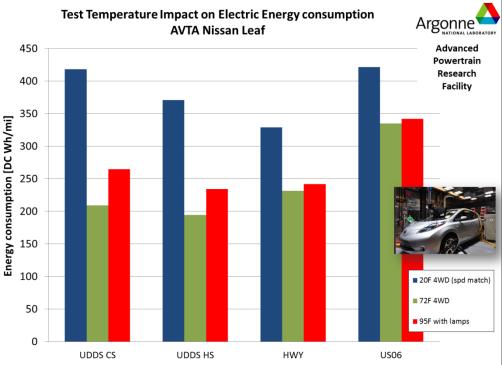

- Less losses with fixed gear
- Below 81 MPH, engine can shut down, less engine-on time,

Disadvantages

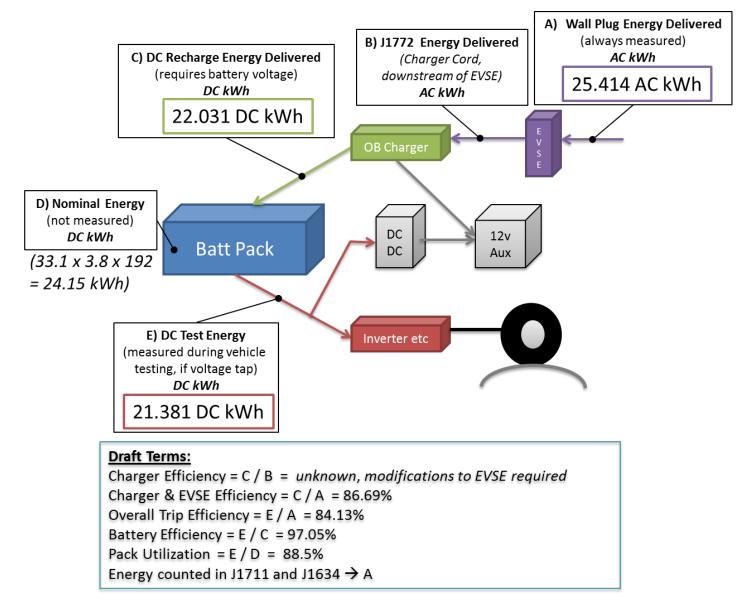
- Motor torque lacking during initial launch (affects driveability)
- Fixed gears not as smooth as e-CVT





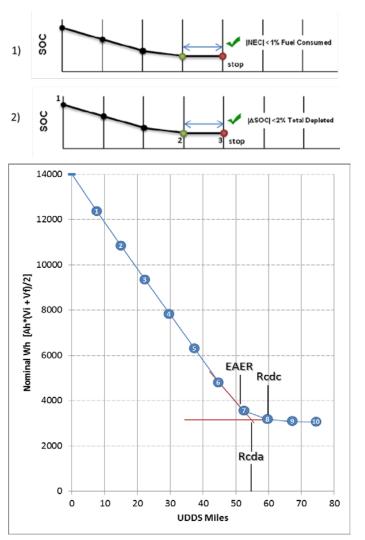

Leaf Efficiency/Range Testing at Hot/Cold

(Newest J1634 Procedures Employed)

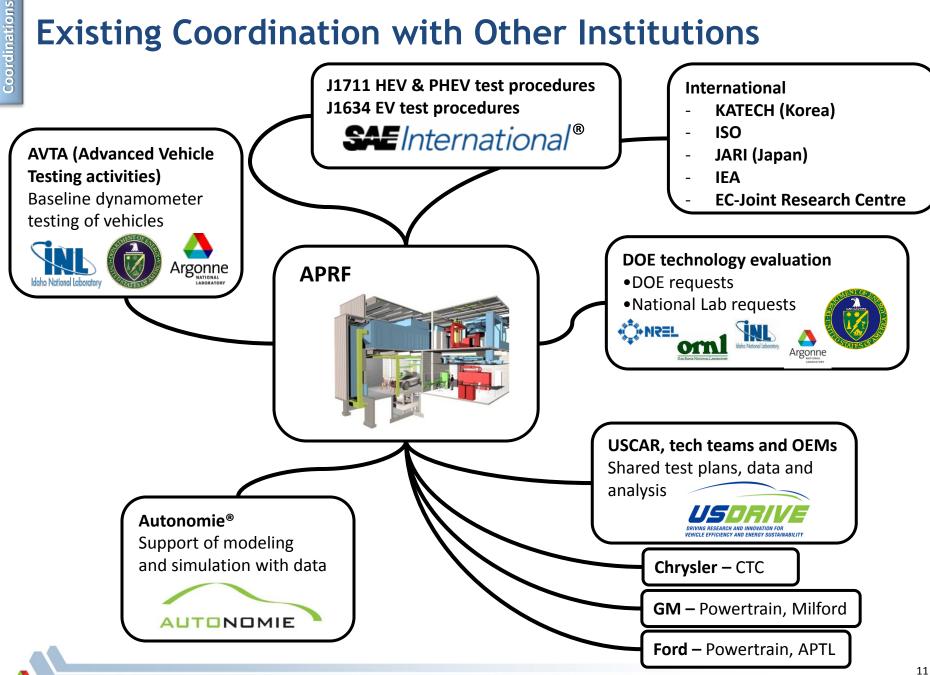

- Heater and A/C cause dramatic differences in consumption
- With heater and A/C consumption per minute is as important as per mile
 - Heater: 2.5 to 5.2 kW
 - A/C: 1 to 1.5 kW

Leaf Recharge System Efficiencies Defined

J1711 Concepts Validated on Volt

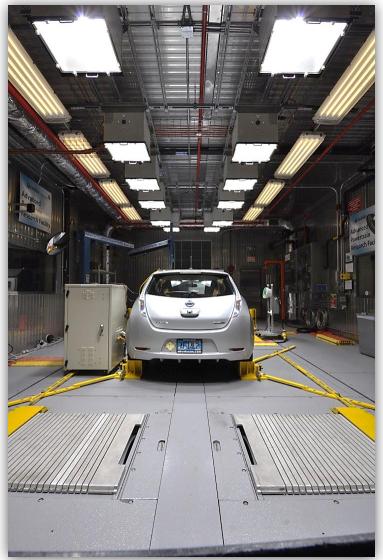

Volt UDDS Full Charge Test Data

				EOT Criteria		AC Wh Calcs	
Cycle	Miles	MPG actual	Ah x (Vi+Vf) /2	(1)∆% of Fuel	(2) ∆% of Disch	Total % of Disch	AC Wh/mi ¹
1	7.43	inf	1582.9	25.72%		14.47%	255.3
2	14.86	inf	1535.7	25.22%	49.24%	14.04%	247.4
3	22.29	inf	1521.0	25.33%	32.78%	13.91%	245.1
4	29.73	inf	1515.2	25.61%	24.62%	13.85%	244.2
5	37.16	inf	1505.6	25.75%	19.65%	13.76%	242.7
6	44.59	inf	1506.1	26.12%	16.43%	13.77%	242.6
7	52.03	232.4	1267.6	22.44%	12.15%	11.59%	204.2
8	59.47	60.6	386.5	6.95%	3.57%	3.53%	62.2
9	66.90	51.0	86.2	1.56%	0.79%	0.79%	13.9
10	74.33	49.0	31.3	0.57%	0.29%	0.29%	5.0


¹ Based upon 13.102 AC kWh recharge to full

- End of Test Criteria checked for robustness. Argonne-prescribed option works best.
- Numerous SAE J1711 range definitions important for calculations of results.
- Same calculations for all PHEVs. PHEV type drives decision of which results are presented.

Existing Coordination with Other Institutions


Future Level 1 Testing to Continue, Now With Hot/Cold Capability

Future AVTA Level 1 Vehicle Testing Plans (FY12 and FY13)

- Conv: Civic CNG, Jetta TDI
- HEV: Infiniti M35h hybrid, Regal e-assist
- PHEV: Cmax Energi, Prius PHEV
- BEVs: Focus, Mitsubishi I

New Vehicle Technology Evaluations

- Many OEMs adding novel warm-up hardware and controls
- Lab can achieve 0° F for investigations in very cold operation
- Prius PHEV using blended operation: how will it perform?
- New PHEVs/BEVs from other OEMs
- Lab continues to be Fuel Cell Vehicle capable
- Benchmark new Natural Gas Vehicles (NGV)

Summary

- The Level 1 Benchmark Activity provides precise laboratory test data for a wide range of vehicle technologies that address DOE goals
 - Establish state-of-the-art automotive technology baseline for powertrain systems and components through data collection and analysis
 - Providing independent evaluation of technology and support for DOE target setting
 - Generating test data for model development and validation to encourage speed-tomarket of advanced technology
 - Supporting codes and standards development for unbiased technology weighting
- Link to industry an important component of vehicle testing
 - Best test practices, facility hardware recommendations, data analysis methods
 - Industry technology developers provide insight into what data is of interest
- Upgrade for hot/cold testing addressed important real-world operation
- ANL Level 1 testing addressed new technologies
 - The Sonata HEV data shows promise for "P2" hybrids. Controls and sizing issues likely to be addressed in future generations
 - Leaf BEV data will be an important benchmark to compare all future BEV advances
 - Volt PHEV data also important benchmark, also important for standards work