

Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

John P. Rugh National Renewable Energy Laboratory May 15, 2012

Project ID: VSS046

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project Start Date:FY11Project End Date:FY14Percent Complete:35%

Budget

Total Project Funding:\$ 750 K*Funding Received in FY11:\$ 375 K*Funding for FY12:\$ 375 K*

* Shared funding between VTP programs: VSST, APEEM, ESS

Barriers

- Cost cooling loop components
- Life thermal effects on energy storage system (ESS) and advanced power electronics and electric motors (APEEM)
- Weight additional cooling loops in electric drive vehicles (EDVs)

Partners

- Interactions/collaborations
 - "Detroit 3" OEM
- CRADA is in approval process
 - Visteon Corp.
 - Magna Steyr
- Project lead: NREL

Overview – Collaboration Between Vehicle Technology Programs

Relevance – The PHEV/EV Thermal Challenge

- Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) have increased vehicle thermal management complexity
 - Separate coolant loop for APEEM
 - Thermal requirements for ESS
- Additional thermal components result in higher costs
- Multiple cooling loops lead to reduced range due to
 - Increased weight
 - Energy required to meet thermal requirements
- Since thermal management crosses multiple groups at automobile manufacturers, cross-cutting system designs are challenging

Relevance/Objective

Objective

 Collaborate with industry partners to research the synergistic benefits of combining thermal management systems in vehicles with electric powertrains

Targets

- Improve vehicle performance and reduced cost from the synergistic benefits of combining thermal management systems
- Reduce volume and weight
- Reduce APEEM coolant loop temperature (less than 105°C) without requiring a dedicated system

Approach – Overall

- Build a 1-D thermal model (using KULI software)
 - APEEM, energy storage, engine, transmission, and passenger compartment thermal management systems
 - Identify the synergistic benefits from combining the systems
 - Perform a detailed performance assessment with production-feasible component data
- Conduct bench tests to verify performance and identify viable hardware solutions
- Collaborate with automotive manufacturers and suppliers on a vehicle-level project
- Solve vehicle-level heat transfer problems, which will enable acceptance of vehicles with electric powertrains

Approach FY12 – Go/No-Go

Go/No-Go Decision Point: Based on the outcome of analysis of the thermal management system concepts, assess if building a benchtop system is justified or if further analysis is needed

Challenges / Barriers:

- Integration of requirements and coordination of the diverse groups that have thermal management activities at the automotive OEMs and DOE
 - Meeting the heat load requirements of the APEEM components, battery, engine, and passenger compartment with a thermal management system that is less costly and complex

Approach – Analysis Flow Chart

Leverage existing DOE projects

- Vehicle cost/performance model
- Lumped parameter motor thermal model
- Battery life model

Brian Cunningham Energy Storage

March 2011 – Solid Foundation for March 2011 - March 2012 Research

- Thermal component and system information
 - Visteon Corp. (Tier 1 HVAC component supplier)
 - Drawings
 - Thermal and flow component data
 - System data

• Built components in KULI

- Used geometry, heat transfer, pressure drop, etc.
- Verified component functioning as expected
- Developed A/C, cabin thermal, and APEEM cooling loop models
 - Connected components
 - Compared to test data

Improvements to Models

- Improved electric motor model
- Added inverter model
- Updated FASTSim model (heat generated for ESS and APEEM components)
- Improved A/C compressor control
- Adjusted heat exchanger air-side positions to more closely match current EVs
- Developed hot and cold design cases

ESS Cooling Loop Model Battery Jacket Cooled by a Chiller (WEG to Refrigerant Heat Exchanger) or a Radiator

WEG = water-ethylene glycol

A/C System Model Added Chiller Branch for ESS Cooling Loop

Baseline A/C, Cabin, ESS, and APEEM Cooling Loops Liquid Circuits Combined into a Single Simulation

Baseline A/C, Cabin, ESS, and APEEM Cooling Loops Air Side – Low Temperature Radiators Behind Condenser

Baseline EV Thermal Management System

EV Test Case at Four Ambient Temperatures

- 24 kWh EV
- Environment
 - 43°C, 35»Ô, 30»Ô, 25»Ô
 - 25% relative humidity
- 0% recirc
- US06 drive cycle
- Cooldown simulation from a hot soak
- ESS cooling loop with chiller & low temperature radiator
- Waste heat load from FASTSim simulations

Photo Credit: John Rugh, NREL

At Higher Ambient Temperatures, Cabin is still Warm after 10 min.

Battery Cells Cool Quickly with the Chiller

Battery Cells Cool Quickly with the Chiller

35 C Ambient – Cabin and ESS Cooling

Initially Less Than 50% of the A/C System Capacity is Going to the Cabin

35 C Ambient – Cabin and ESS Temperatures

Tradeoff between Battery Cooling and Thermal Comfort

Electric Motor Temperatures

APEEM Fluid Temperatures – Critical to Inverter Maximum Temperature

VTM Power including Compressor, Fans, Blowers, Pumps

VTM Power including Compressor, Fans, Blowers, Pumps

Davis Dam drive cycle

- Acceleration, then constant 55 mph up a constant 5% grade
- 24 kWh EV
- Environment
 - 43°C
 - 25% relative humidity
 - 850 W/m²
- Cooldown simulation from a hot soak
- ESS cooling loop with chiller
- Waste heat load from FASTSim simulations

Baseline System - Davis Dam

In extreme conditions, APEEM components within thermal limits

Baseline EV Thermal Management System EV at Bemidji – Exploring the Cold Design Limits

- Bemidji drive cycle
 - UDDS
- 24 kWh EV
- Environment
 - -18°C
 - 25% relative humidity
 - No solar load
- Warm-up simulation from a cold soak
- Waste heat load from FASTSim simulations

Photo Credit: Mike Simpson, NREL

Collaboration

• Visteon Corp.

- Data
- Engineering support
- "Detroit 3" OEM CRADA is in approval process
- Magna Steyr
 - KULI software
 - Engineering support
- VTP Tasks
 - Vehicle Systems
 - Energy Storage
 - Advanced Power Electronics and Electric Motors

Future Work

- Using the KULI model, analyze concepts for combining cooling loops
 - Assess benefits
 - Maximum temperatures
 - Battery life
 - Cost
 - Range
 - Add new components
 - Improve model as required
- Based on the analysis results, select, build, and evaluate prototype systems in a lab bench test to demonstrate the benefits of an integrated thermal management system
- Lead a vehicle-level project to test and validate combined cooling loop strategies

Summary

DOE Mission Support

 Combining cooling systems in EDVs may reduce costs and improve performance, which would accelerate consumer acceptance, increase EDV usage, and reduce petroleum consumption

Overall Approach

- Build a thermal 1-D model (using KULI software)
 - APEEM, energy storage, engine, transmission, and passenger compartment thermal management systems
 - Identify the synergistic benefits from combining the systems
- Select the most promising combined thermal management system concepts and perform a detailed performance assessment and bench top tests
- Solve vehicle-level heat transfer problems, which will enable acceptance of vehicles with electric powertrains

Summary (cont.)

Technical Accomplishments

- Developed a modeling process to assess synergistic benefits of combining cooling loops
- Improved A/C, cabin, APEEM cooling loop KULI models and built ESS cooling loop KULI models
- Assembled the KULI models into a baseline simulation of a Nissan Leaf-sized EV
 - Produced reasonable component and fluid temperatures
- Assessment of combined cooling loop concepts underway

Collaborations

- Collaborating closely with OEM, Visteon Corp. and Magna Steyr
- Leveraging previous DOE research
 - Battery life model
 - Vehicle cost/performance model
 - Lumped parameter motor thermal model
- Co-funding by three VTP tasks demonstrates cross-cutting

Acknowledgements, Contacts, and Team Members

Special thanks to:

David Anderson Steven Boyd Brian Cunningham David Howell Susan Rogers Lee Slezak Vehicle Technologies Program For more information: Task Leader and PI: John P. Rugh National Renewable Energy Laboratory John.rugh@nrel.gov 303-275-4413

NREL Team: Kevin Bennion Aaron Brooker Laurie Ramoth Kandler Smith