

SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

Vehicle Systems

DOE Contract: DE-EE0003303

NETL Project Manager: Ralph Nine Program Investigator : Dennis W. Jadin, Navistar

> DOE MERIT REVIEW WASHINGTON, D.C.

> > May 17th, 2012

National Energy Technology Laboratory Department of Energy

Project ID: VSS064

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Outline

2

- Program Overview
- Barriers and Technology Roadmap
- Approach
- Technical Accomplishments
- Future Work
- Summary

Program Overview

Goals and Objectives

Demonstrate 50% improvement in overall freight efficiency of a combination Tractor-Trailer

- 30/50% improvement achieved through tractor/trailer technologies
- 20/50% improvement achieved through Engine technologies

Attain 50% BTE Engine

Demonstrate path towards 55% BTE Engine

Barriers

Achieving 50% freight efficiency while balancing Voice of Customer Needs Packaging of hybrid drive unit and Waste Heat Recovery Systems Maintaining tractor weight while adding new systems

Availability of Suitable Battery Technology

Budget

DOE recently approved new budget periods / phases >>>>

An increased level of resources planned in budget periods 2 & 3 will accommodate project deliverables in periods 4 & 5.

Total Project Funding:	DOE	\$37,328,933
	Prime Contractor	\$51,801,146
DOE Funding Received :		\$ 13,393,868

Budget Period	Start Date	End Date
1	10/01/10	08/31/12
2	09/01/12	09/30/13
3	10/01/13	06/30/14
4	07/01/14	03/31/15
5	04/01/15	09/30/15

3

Partners (Collaboration and Coordination with Other Institutions)

Principal Investigator, Vehicle Systems Integrator Controls Navistar Systems, Engine & Vehicle Testing Lightweight Frame Structures & Wheel Materials Alcoa **ATDynamics** Trailer Aerodynamic Devices **Behr America** Cooling Systems Meritor Hybrid Powertrain, Axles Michelin Low Rolling Resistance Tires Wabash National Trailer Technologies TBD Composite Material Structures (was TPI) Argonne National Lab Hybrid Drive Simulation and Controls & Battery Testing Lawrence Livermore Aerodynamic Testing National Lab

Barriers (Challenges) And Technology Roadmap

System Area	Barriers	Technology Roadmap
Engine & Vehicle	Achieving 50% freight efficiency while balancing Voice of Customer Needs	 ✓ Seek and Prioritize Voice of Customer Inputs • Rely on analysis (tradeoff) to select technology
Vehicle	Packaging of hybrid drive unit and Waste Heat Recovery Systems	 Redesign drive unit and batteries to achieve overall size reduction.
Vehicle	Maintaining tractor weight while adding new systems	 Optimize Body Structure Requirements for over the road usage. Utilize Advanced Materials for Light Weighting (Polycarbonate Glazing, Composites, Alloys)
Hybrid Drive	Suitable batteries (rugged, affordable, powerful) are not commercially available Weight penalty affecting FE	 ✓ Develop a detailed battery specification ✓ Reach out world-wide to potential suppliers ✓ Select new supplier Collaborate to develop lighter SuperTruck batteries Identify additional lightweighting opportunities

Approach: Vehicle Vs. Chassis Efficiency

NAVISTAR[®] Advanced Technologies

% Fuel Economy Improvement

Approach: Technology Roadmap - Vehicle

Mule Truck #2 Build Status – Planned to do for freight efficiencies for 2012

- Dual Mode Hybrid
- Electric Turbo Compounding (TuCo)
- Active 5th Wheel
- Dynamic Ride Height (includes front air)
- Full Length Drive Wheel Skirts
- High-rise Roof Air Fairing
- ATDynamics Boat Tail
- Michelin Wide Based Single Tires (WBS Tires)
- Camera Surrogate Mirrors
- External LED Lighting, Including Headlights
- Meritor Air Disk Brakes
- Meritor SMARTandem 6x2 Axle System
- Power Steering Upgrades
- Wabash Light Weight Trailer

Mule #1 items Mule #2 new technologies

Approach: Technology Roadmap - Vehicle

	- In Progress	- Completed			
Vehicle Systems Technology Rollout (2011-2012)					
Technology Category	Area of Concentration	Status			
1. Aerodynamics	Advanced Tractor Shape -Speed Form Study	2Q 2012			
	Surrogate Rear View Mirrors- Initial Concepts	2Q 2012			
	Advanced Trailer Shapes -PIV -Particle Image Velocimetry	3Q 2011			
	Tire Skirting; Steer, Drive & Trailer	2Q 2012			
	Tractor-Trailer Gap Reductions; Dyn. 5th wheel, Cab Extenders	2Q 2012			
	Cooling System Exhaust location Impacts on Aerodynamics	1Q 2012			
	Trade-off Studies of Cooling System Concepts	2Q 2012			
	Determine Thermal Management Configuration	3Q 2012			
	Aero Drop, Electronic Suspension Leveling, Tractor & Trailer	2Q 2012			
2. Vehicle Lightweighting	Advanced Modular Chassis Construction	4Q 2012			
	Efficient Drive Axle, 6x2 Configuration	1Q 2012			
	Cab Architecture Downselection	2Q 2012			
	Cab Structural Design & Material Selection	4Q 2012			
	Trailer Architecture Selection	4Q 2012			
	Trailer Structural Design & Material Selection	4Q 2012			
3. Driveline	Optimized Wide-Based Single Tires & Wheel End Equipment	4Q 2011			
	Next Gen Wide-Based Single, Low Rolling Resistance Tires	4Q 2011			
	Tire Pressure Monitoring and Inflation	2Q 2012			
	Efficient Drive Axle, 6x2 Configuration	1Q 2012			
4. Hybrid Drivetrain	Mule Vehicle #1	3Q 2011			
	Electrified Accessories; Power Steering, AC & Air Compressors	3Q 2011			
	Mule Vehicle #2	3Q 2012			

Technical Accomplishments 1. Aerodynamics – Development Progress

Advanced Technologies

Technical Accomplishments 1. Aerodynamics – Status

Configuration	Measured	Normalized Cd%	Freight Efficiency Impact
ProStar Short Sleeper (Baseline)	2010	100	0%
ProStar Long Sleeper	2007	94	3%
Aero Concept 2010-2011 (Tractor Only)	2010	88	6%
Aero Concept 2010-2011 (Tractor & Trailer)	2010	75	12.50%
Best Tested Feb 2012 w/Steer Axle & Cooling Flow Integrated	2012	60	20%

Technical Accomplishments 2. Lightweighting

📃 - In Pro	gress	- Completed	
SYSTEM	DE	SCRIPTION	SAVINGS (lbs.)
Axle - Smart Tandem	Removes one drive a Light Weight rotor &	xle (6 X 2 configuration) caliper yields 10#/ wheel	-400
Brake System - Disc	end		-200
Single Prop Shaft	Increased tube dia. v	vith thinner wall	-70
Tires and Wheels	Wide Based Singles v	vith NG Aluminum Rims	-1000
Body -Cab	Composite / multi m	aterial panels	-500
Plastic Fuel Tank	Single one hundred g	allon fuel tank	-110
Fuel	Second 100 gal. of fu	el = 700 #	-700
Trailer	Composite load floor	composite load floor	
Trailer Suspension	Weight reduced com	ponents	-220
Chassis System	Weight reduced syst	em	-200
Cooling Modules	Less modules		-200
Third Gen. Batteries	Modular style batter	ies	-600
Third Generation E motors	Improved Power den	sity	<u>-895</u>
Mule 1 before Hybrid Pros	tar 122 13L = 18140#	Total Possible Reduction	-5595
, Mule 1 Prostar 122 13L = 2	2840#	> Hybrid Incremental	<u>4700</u>
22840 - 18140 = 4700# Hyl	brid Incremental	Net Reduction	-895
	Proposed Ta	rget Weight Reduction for FE	<u>4000</u>
		Lightweighting Gap	3105

Technical Accomplishments 3. Driveline - Wheel End Equipment Team

Factors for Consideration		Subcategory	
	Weight	Weight	
Efficiency	50%	310	
Rolling Efficiency -Tires		10	1
Aero impacts - ie. tire size, wheel size, wheel covers, suspension ride height, overall height		10	
System Weight		8	
Alignment Control / Vehicle Efficiency		3	
Bearing & Seal Drag		0	
Brake Drag		0	
Design Feasibility	35%	550	
Durability / Reliability		9	
dFMEA		10	
System Temperatures (Tires, Wheels, Brakes, Seals, Bearings) difficulty to control temperatures		8	
Development Time (to Demo units)	_	7	
SuperTruck investment within current planned budget		6	
System Cost		AB-	188
Capital Investment		REF.	98
Improved Alignment Control / Tire Wear		PB8	H /
Commercialization	15%	1888	在
Commercial Applicability / Flexibility		1222	
Servicability		RRR	A
Deviation from Industry Standards - positive acceptance by industry		BBB	新く
Early Production		682	H.
Totals			1986

- New Wheel End Decision Matrix
 - Alcoa, Michelin, Meritor, Navistar
 - 25 total people participating (some full time, others part time)
 - 6 design choices plus current production
 - 3 weighted major design considerations
 - 18 total categories
- Chose the Next Generation Wide Based Single Tire for driving and trailer use.
 - 1.5% FE savings from aero drag reduction
 - Weight savings in axle and wheel ends
 - Team developing new wheel end design spec.
 - Michelin started tooling for new tire.

Technical Accomplishments 4. Hybrid Powertrain – Real-World Testing

Advanced Technologies

<u>Ohio Transportation</u> <u>Research Center</u>

•Fuel Economy Testing

•In progress

<u>Michigan Proving</u> <u>Grounds</u>

•Software and Calibration Development

•Summer, 2012

Navistar Proving Grounds

•Software and Calibration Development

•Fall/winter, 2012

<u>Colorado</u> •Highway Testing •Summer, 2012

- Navistar's "Kentucky Route" is commonly-used to quantify fuel consumption of class 8 vehicles
 - Low traffic density for good repeatability
 - Highway-type route (high speed)
 - Large database to compare to
 - 75% of the total weighting
- The remaining 25% can be a test-track urban cycle, like CILCC or HHDDT Transient

Kentucky Route Speed Distribution

Technical Accomplishments 4. Hybrid Powertrain – Fuel Economy Testing

rieet test venicies					
Control Vehicle Pre-Hybrid Hybrid Powertrain Hybrid Powertrain ProStar Mule 1 Mule 2					
VIN	E4173	E2933	E2941	E2933	
Model Year	2009	2010	2010	2010	
Transmission	10-Spd Manual	Eaton AutoShift	Dual-Mode Hybrid	Dual-Mitte Hybrid	
Engine	2009 MaxxForce 13	2010 MaxxForce 13	2010 MaxxForce 13	2010 ⁹⁵ MaxxForce 13	
Tractor Weight	19,150	18,320	22,060	TBD	

Floot Toot Vahialas

55 mph Steady-State Test Results

	Tractor Weight Diff.	MPG	Freight Eff at Constant Freight Weight (Cubed-Out)
Hybrid Relative to '09 Control Truck	+2910	3.7% Better*	3.7% Better*
Hybrid Relative to '10 Pre-Hybrid	+3760	7.1% Better*	7.1% Better*

*Results not complete. More runs required to achieve statistical validity

Technical Accomplishments Vehicle Freight Efficiency Summary

NAVISTAR[®] Advanced Technologies

Vehicle Technologies		Target	Status	Estimate	
4. Hybrid	Dual-mode Gen II w/EiG batteries	6%	3.7%*		
3. Driveline	SMARTandem & Opti Lube Next Gen WBS Tires, Electronic Leveling Electrified Accessories*	4%	-	+4% _** _*	
2. Lightweight	SMARTandem, Ladder assembly Next Gen WBS Wheels & Tires Composite Cab & Trailer Structures	4%	-	+0.3% - -	
1. Aero Enhancements	Dynamic 5 th Wheel Dynamic Ride Height Surrogate Camera Mirrors Tractor Shapes Trailer Shapes & Features Reduced Height w/NG WBS Tires	- 16%	20%	+1.5% +1.5%	Z
Total		30%	23.7%	+7.3%	

* Electrified accessories are contained within the Hybrid system results.

** Next Gen WBS Tires provide improvement through reduced vehicle height and frontal area in Aero.

Future Work for 2012

- Complete steady-state and urban driving cycles to demonstrate 5-10% improvement in freight efficiency due solely to hybrid drive
- Commission the next-gen mule 2 truck and its upgraded technologies
 - Electric turbo-compounding
 - Aero improvements (tractor and trailer)
 - Smart tandem
 - Low-rolling resistance tires
 - Air suspension
 - Active fifth wheel

- Upgrade both hybrid drive units for improved shift reliability
- Demonstrate a 25% improvement in freight efficiency using the next-gen mule 2 truck and a trailer with add-on aero features
- Build and install Gen-3 hybrid drive units and re-engineered batteries in mule trucks
- Finish 1/8th and 1/3rd scale wind tunnel testing
- Finalize the demo truck concept

Relevance:

• The potential of a class 8 truck and trailer combination configured to save 9 billion gallons of diesel fuel per year, reduce our dependence on foreign oil and improve our environment by reducing green house gases has significant national and global interests.

Approach:

• Project focus is on assessing and developing both engine and vehicle technologies to improve freight efficiency while balancing voice of customer requirements in a class 8 truck and trailer integrated design.

Technical Accomplishments:

- 1. Several aerodynamic scale-models have been developed and evaluated in the wind tunnel. A significant improvement over the baseline has been observed.
- 2. The hybrid drive unit and battery pack has been redesigned. A weight reduction of approx. 1400 lbs is predicted.
- 3. Highly-efficient axles and tires have been selected and will be tested this year.
- 4. The dual-mode electric hybrid drive system has been demonstrated on-road and is generating fuel economy data

Partnerships & Collaborations:

• Cross-functional and industry partnership teams are working well together. Good mix of skills and resources to address the technical tasks in this project.

Future Directions:

• Continue to progress towards a vehicle and engine demonstration of various efficiency improvement technologies.

Technical Back-Up Slides

Technical Accomplishments 1. Aerodynamics – Timeline of activities

NAVISTAR[®] Advanced Technologies

Technical Accomplishments 1. Aerodynamic Analysis Vehicle Thermal Management Systems

- 1-D System Simulation Goals
 - Improve system performance
 - Minimize energy usage of fans and pumps
 - Support waste-heat recovery systems
 - Decouple sub-system interactions

Under-hood Airflow Analysis

Technical Accomplishments 1. Aerodynamics – Gap Reduction

Advanced Technologies

Full Lenath

Cab Extender

Advantages of Reduced Tractor/Trailer Gap

- Projected 1.5% Highway Fuel Economy Improvement
- Systems can be independent of trailer
- Potentially better aerodynamic/fuel economy payback than trailer mounted devices for fleets with large trailer to tractor ratios

SuperTruck – Development and Demonstration of a Fuel Efficient Class 8 Tractor & Trailer DE-EE0003303

1. Aerodynamics - VTTI Camera Surrogate Mirrors

Cooperative Research Project with VTTI

- Formal kickoff meeting at Navistar being scheduled for April
- VTTI is researching suitable hardware / cameras / lenses
- Navistar arranging loan of test vehicle

Projected 1.5% FE potential savings

- Convex and Flat Mirror Replacements
- Door & Fender Camera Mounting Locations

Technical Accomplishments 4. Hybrid Powertrain – Gen -3 Hybrid Drive Unit

Technical Accomplishments <u>**4. Hybrid Powertrain – Touch-Screen Data Display**Advanced Technologies</u>

- Critical system parameters are displayed and monitored in the cabin
 - Electric machine
 - Battery
 - Turbo-compounding
- Will be used to make certain calibration choices and monitor diagnostic messages

Instrument Panel-Mounted Touch-Screen

