Thermo**E**lectric **P**ower **S**ystem **S**imulator **(TEPSS)**

Sponsored by NYSERDA's Industrial Research and Development Program

> **Robert J. Stevens Mechanical Engineering Rochester Institute of Technology**

2011 DOE Thermoelectrics Applications Workshop January 3 - 6, 2011 San Diego, CA

RIT Sustainable Energy Lab

Overall Goal: To model, test, and design thermoelectric modules and systems for current and future power generation applications.

Material Science & Engineering (nano vs. bulk)

Overview

- Motivation
- TEPSS Overview/Architecture
- Component and Node Modeling
- Optimization Shell
- Thermoelectric Power Unit Component
- Proof of Concept
- Conclusion/Remarks

Motivation

Benefits

- Modular, scalable (mW \rightarrow kW...)
- Solid-state, no moving parts
- Operate over a range of temperatures
- Transient thermal sources
- Minimal maintenance
- No noise, vibration

Niche Applications

- Car exhaust
- Woodstoves, cookstoves
- Remote power
- Sensors
- Radioisotope thermoelectric generator

greencar.com

TEGPower.com

globalte.com

[micropelt.](http://www.micropelt.com/applications/te_power_one.php)com

Motivation

- Over 50 quadrillion BTUs of waste heat generated each year.
- Recovering just 1% would power New York indefinitely.
- Improved TE materials, increased efficiency \rightarrow smaller heat sinks.
- Trade-offs:
	- high ZT vs. cost
	- high ∆T vs. ∆P, weight, volume, cost
- Currently specific device and system models exist.
- Need to integrate material properties, engineering thermal modeling, and economics.

TEPSS Project Goal

Create a versatile tool to evaluate whether or not thermoelectrics are currently or will soon become technically and economically viable for a specific application and if so determine what the optimal system might look like.

- The tool should help quickly assess a range of potential applications for waste heat recovery using emerging thermoelectric materials.
- Most current thermoelectric modeling is geared towards very specific applications and may not consider system trade-offs.
- Historically module and system design have been loosely coupled.

TEPSS Overview

Requirements

- Solve system of equations for the system steady operating state
- Unlimited system concepts defined by user
- Objective function is defined by the user
- Optimizes system configuration with respect to user defined design variables
- Open source and expandable
- Easy to use, modify, and reuse

Challenges

- Energy components are a combination of empirical, analytical or FE/FD models
- Often highly nonlinear system of component models
- System of equations changes for each user defined concept

TEPSS Architecture

- What are energy systems?
	- Independent (modular) components
		- Components contain models and independent of rest of system
	- Interconnected by nodes

TEPSS Architecture

- Object oriented programming (Matlab)
- Components contain engineering models
	- Mass, energy conservation, performance data
- Components are linked together by nodes
	- Nodes provide component boundary conditions.
	- Nodes belong to a specific *domain* (fluid, mechanical rotation, electrical, etc.).

Component Equations and Errors

Conservation of mass

Conservation of energy

$$
\dot{m}_{in} - \dot{m}_{out} = 0
$$
\n
$$
\dot{m}_{in} - \dot{m}_{out} = e(1)
$$
\n
$$
Q_{in} - \dot{m}Cp\Delta T = 0
$$
\n
$$
Q_{in} - \dot{m}Cp\Delta T = e(2)
$$
\n
$$
\Delta P + k\dot{m}^2 = 0
$$
\n
$$
\Delta P + k\dot{m}^2 = e(3)
$$

Viscous dissipation

Collect errors, use root finding
algorithm to set = 0.
 $e = [e(1), e(2), e(3), ..., e(n)]$

algorithm to set $= 0$.

Node Domains

- Through and Across variables
- Fluid domain (fluidprop.tudelft.nl/)

Steady State Simulation

Systems of nonlinear equations solved iteratively with Newton's Method:

$$
\Delta x_{i} = -[J(x_{i})]^{-1} \times f(x_{i})
$$
\n
$$
x_{i+1} = x_{i} + \Delta x_{i}
$$
\n
$$
[J(x_{i})] = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{m}} \end{bmatrix}
$$

i is iteration number, *x* and *f* are vectors, $[J(x_i)]$ is Jacobian Matrix at *xi*

TEPSS Architecture

 $\frac{\Delta V}{\Delta}$

General Cost Function

- Common cost metrics
	- Simple payback (added cost/net savings per year)
	- Cost per unit energy output
	- Emissions per unit energy output

$$
\text{cost} = \frac{\sum_{i=1}^{n} A_i + t \sum_{i=1}^{n} B_i + t \sum_{i=1}^{n} ([C_i][U])}{\sum_{i=1}^{n} D_i + t \sum_{i=1}^{n} E_i + t \sum_{i=1}^{n} ([F_i][V])} + \sum_{i=1}^{n} \Phi
$$

 $n =$ number of components *A-F*, *U*, *V* and $t =$ user inputs Φ = user defined penalty function

User Inputs

- Solver inputs
	- components and nodes
	- interconnections (system concept)
	- initial guesses
	- boundary conditions
	- convergence criteria
- Component parameters
- Optimization inputs
	- design variables
	- upper and lower bounds
	- convergence criteria
- Cost function

```
solver inputs.fstr = '{compressor(parameters.compressor), tepowerun
 %create the nodes by assigning a cell in cell array n to the class
 %definition of the node domain.
\exists for i=1:6
     solver inputs.n{i} = fluid('N2, 02, CH4', [.7466, .1985, .0549], 'Gas
 end
 solver inputs. n\{7\} = mechrot;
 solver inputs.n\{8\} = mechrot;
```
%p Leg

```
parameters.tepowerunit.module.rho p=8e-6; %ohm*m
parameters.tepowerunit.module.alpha p=2e-4; %V/K
parameters.tepowerunit.module.k p=1.5;%w/(m*k)
parameters.tepowerunit.module.1 p=.005; %m
parameters.tepowerunit.module.area p=(1.397e-3)^2;% for 1 leg
```


Thermoelectric Power Unit Component

- Counter and parallel flow using any combination of fluids as well as isothermal or constant heat flux configurations.
- Independently specified heat sink type and geometry (aligned and staggered plates, pin fins), material, fin pitch, and contact resistances.
- Pressure drop models for all configurations
- Thermal coupling with surrounding environment.
- Module layout in zones, series, and parallel.
- Heat spreading accounted for using modified model developed by Ellison. (G.N.Ellison, *IEEE Trans. on Comp. & Packaging Tech.,* 2003)

Thermoelectric Power Unit Zone

- 12 equations for each zone represent various energy balances and the standard TEM models
- Set of equations are nonlinear and solved internally using numerical techniques to obtain heat flows and temperatures throughout the system and final power recovered by each zone.

$$
q_{ins(j)} = \frac{T_{H(j)} - T_{C(j)}}{R_{ins}}
$$

\n
$$
q_{comb,H(j)} = \frac{\Delta T_{lm,H(j)}}{R_{cond,H}}
$$

\n
$$
q_{H(j)} = \frac{T_{H(j)} - T_{C(j)}}{R_{ih}} - \frac{1}{2} I_{(j)}^2 R_e + \alpha T_{H(j)} I_{(j)}
$$

\n
$$
q_{C(j)} = \frac{T_{H(j)} - T_{C(j)}}{R_{ih}} + \frac{1}{2} I_{(j)}^2 R_e + \alpha T_{H(j)} I_{(j)}
$$

\n
$$
I_{(j)} = \frac{\alpha (T_{H(j)} - T_{C(j)})}{R_e + R_{load}}
$$

 $R_{comb} = f$ f(fin type & material, geometry, flow rate, fluid type, heat spreading)

Standard 1D Thermoelectric Model

 q_H

ЧС

 $x = 0$

 T_H

 $\overline{\boldsymbol{I}}_C$

 \bm{P}_{TEM}

• Multiple module model options:

$$
q_{H} = I \alpha_{p,n} T_{H} + K(T_{H} - T_{C}) - \frac{I^{2} R_{e}}{2}
$$

- experimentally measured values
- manufacturer specifications
- build from selected TE material properties, leg geometries, and contact resistances.

$$
K = n \left(\frac{A_p}{2R^{\prime \prime}_{c} + {}^{l}p} \bigg|_{\lambda_p} + \frac{A_n}{2R^{\prime \prime}_{c} + {}^{l}n} \bigg|_{\lambda_n} \right) \qquad R_e = n \left(\frac{\rho_p l_p + 2r^{\prime \prime}}{A_p} + \frac{\rho_n l_n + 2r^{\prime \prime}}{A_n} \right)
$$
\n
$$
\alpha_{p,n} = n(\overline{\alpha_p} - \overline{\alpha_n})
$$
\n
$$
R \cdot I \cdot J
$$

Proof of Concept

- Power Unit Design Parameters:
	- 1.0 mm aligned plate fins, counter flow configuration
	- 10 zones, 12,500 4cm x 4cm modules (127 couples)
	- TE Properties: ^α*^p* = -^α*^p* = 200 µV/K, λ*^p* = λ*^p* = 1.5 W/m∙K, ^ρ*^p* = ^ρ*^p* = 8e-6 Ω ∙m $ZT \sim 2.5 \omega$, 750K
	- Base area to module ratio of 9
	- Design parameters: channel height (3-12 cm) and fin density (4-24/module)
- Costs (materials, per leg pair, per module, fuel cost, 20 year ω 100% capacity)
- Cost function = additional cost per generated kWh_e above base system

Proof of Concept

Optimal Case: *l = 6.03* **cm** *n = 13.9* **fins/module** $W_{net} = 10.11 \text{ MW}$ $W_{TEG} = 121 \text{ kW}$ $Cost = 4.03$ ℓ /kWh *Cost function* = -14.12%

Proof of Concept

Closing Remarks

- TEPSS environment has been developed for simulating and optimizing thermoelectric power generation systems.
- TEPSS is expandable with reusable and customizable components.
- New node domains and components can be added to increase potential system concepts.
- TEPSS will allow for the exploration of suitable applications for emerging TE materials while coupling module level design with system level performance and economics.
- Working on more robust steady state solver and optimization options and developing more advanced component models.
- Interest in using/testing contact r iseme ω rit.edu

Acknowledgements

- John Kreuder
- Andy Freedman
- NYSERDA (Contract #11135)

NYSERDA has not reviewed the information contained herein, and the opinions expressed in this presentation do not necessarily reflect those of NYSERDA or the State of New York.

Sample Component Class

classdef pump < handle

properties (SetAccess=private)

design variables component operating parameters end

Blower Nodes

methods

function obj = pump(parameters) component setup end

function e = compute(obj, node1, node2, onoff) engineering models end

function component $\text{cost} = \text{cost}(\text{obj})$

component costing models end

function y = paramcheck(obj)

constraint and physical check models end

Optimization in TEPSS

- **MATLAB** *fmincon* optimization algorithm *Constrained nonlinear optimization*
	- User supplies cost function
	- Simulation determines steady state
	- Cost function is evaluated at steady state
	- New parameters are chosen by *fmincon*
	- Repeat until cost function is minimized

