
ThermoElectric Power System
Simulator (TEPSS)

Sponsored by NYSERDA’s Industrial Research
and Development Program

Robert J. Stevens
Mechanical Engineering

Rochester Institute of Technology

2011 DOE Thermoelectrics Applications Workshop
January 3 - 6, 2011

San Diego, CA 



RIT Sustainable Energy Lab

Fundamental Applied

Nanoscale Heat 
Transfer

Material Science & 
Engineering
(nano vs. bulk)

Material Testing Device Modeling Module Design

Module Testing

System Modeling System Design & 
Testing

 

Overall Goal: To model, test, and design 
thermoelectric modules and systems for 
current and future power generation 
applications.
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Motivation
Benefits
• Modular, scalable (mW kW…)
• Solid-state, no moving parts
• Operate over a range of temperatures
• Transient thermal sources
• Minimal maintenance
• No noise, vibration

Niche Applications
• Car exhaust
• Woodstoves, cookstoves
• Remote power
• Sensors
• Radioisotope thermoelectric generator

greencar.com

saturn.jpl.nasa.gov

TEGPower.com

globalte.com

micropelt.com

http://upload.wikimedia.org/wikipedia/commons/0/03/Cutdrawing_of_an_GPHS-RTG.jpg�
http://www.micropelt.com/applications/te_power_one.php�
http://www.micropelt.com/applications/te_power_bolt.php�


Motivation
• Over 50 quadrillion BTUs of waste heat generated each year.
• Recovering just 1% would power New York indefinitely.
• Improved TE materials, increased efficiency smaller heat 

sinks.
• Trade-offs:

– high ZT vs. cost
– high ∆T vs. ∆P, weight, volume, cost

• Currently specific device and system models exist.
• Need to integrate material properties, engineering thermal 

modeling, and economics.

Th,in
qin

Th,out
qout

Th,TE
qTE



TEPSS Project Goal
Create a versatile tool to evaluate whether or not 
thermoelectrics are currently or will soon become 
technically and economically viable for a specific 
application and if so determine what the optimal 
system might look like.

• The tool should help quickly assess a range of potential 
applications for waste heat recovery using emerging 
thermoelectric materials.

• Most current thermoelectric modeling is geared towards 
very specific applications and may not consider system 
trade-offs.

• Historically module and system design have been 
loosely coupled.
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TEPSS Overview
Requirements

• Solve system of equations for the system steady operating state
• Unlimited system concepts defined by user
• Objective function is defined by the user
• Optimizes system configuration with respect to user defined design 

variables
• Open source and expandable
• Easy to use, modify, and reuse

Challenges
• Energy components are a combination of empirical, analytical or 

FE/FD models
• Often highly nonlinear system of component models
• System of equations changes for each user defined concept



TEPSS Architecture
• What are energy systems?

• Independent (modular) components
– Components contain models and independent of rest 

of system
• Interconnected by nodes

– Nodes store data



TEPSS Architecture
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Component

• Object oriented programming (Matlab)
• Components contain engineering models

– Mass, energy conservation, performance data
• Components are linked together by nodes

– Nodes provide component boundary conditions.
– Nodes belong to a specific domain (fluid, mechanical 

rotation, electrical, etc.).



Component Equations and Errors
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Node Domains
• Through and Across variables
• Fluid domain 

(fluidprop.tudelft.nl/)

Domain Variable
electrical current

voltage
fluid mass flow

specific enthalpy
pressure

rotation 
mechanical

torque

angular velocity



Steady State Simulation
Systems of nonlinear equations solved iteratively 
with Newton’s Method:

i is iteration number, x and f are vectors, [J(xi)] is 
Jacobian Matrix at xi
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TEPSS Architecture

Design Variables: 
# modules, materials, fin density, 

fin materials, etc.
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General Cost Function
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n = number of components
A-F, U, V and t = user inputs
Φ = user defined penalty function

• Common cost metrics
– Simple payback (added cost/net savings per year)
– Cost per unit energy output 
– Emissions per unit energy output



User Inputs
• Solver inputs 

– components and nodes
– interconnections (system concept)
– initial guesses
– boundary conditions
– convergence criteria

• Component parameters
• Optimization inputs

– design variables
– upper and lower bounds
– convergence criteria

• Cost function



Thermoelectric Power Unit Component

• Counter and parallel flow using any combination of fluids as well as 
isothermal or constant heat flux configurations.

• Independently specified heat sink type and geometry (aligned and 
staggered plates, pin fins), material, fin pitch, and contact resistances.

• Pressure drop models for all configurations
• Thermal coupling with surrounding environment.
• Module layout in zones, series, and parallel.
• Heat spreading accounted for using modified model

developed by Ellison. (G.N.Ellison, IEEE Trans. on Comp. & Packaging Tech., 2003)



Thermoelectric Power Unit Zone
• 12 equations for each zone represent various 

energy balances and the standard TEM models
• Set of equations are nonlinear and solved 

internally using numerical techniques to obtain 
heat flows and temperatures throughout the 
system and final power recovered by each zone.

Rcomb = f(fin type & material, 
geometry, flow rate, fluid type, 
heat spreading)
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• Multiple module model options: 

– experimentally measured values
– manufacturer specifications
– build from selected TE material properties, leg 

geometries, and contact resistances.

Standard 1D Thermoelectric Model



Proof of Concept

• Power Unit Design Parameters:
– 1.0 mm aligned plate fins, counter flow configuration
– 10 zones, 12,500 - 4cm x 4cm modules (127 couples)
– TE Properties: αp = -αp = 200 µV/K, λp = λp = 1.5 W/m∙K, ρp = ρp = 8e-6 Ω ∙m                          

ZT ~ 2.5 @ 750K
– Base area to module ratio of 9
– Design parameters: channel height (3-12 cm) and fin density (4-24/module)

• Costs (materials, per leg pair, per module, fuel cost, 20 year @ 100% capacity)
• Cost function = additional cost per generated kWhe above base system

Tmax = 1500 K

ηc = 85%
r = 12
Win = 10 MW

ηt = 90% ηg = 97%

Pin = Patm = 101.3 kPa
Tin = Tatm = 300 K

Pout = Patm = 101.3 kPa

l



Proof of Concept
Base Case: 
Wnet = 10.00 MW
Cost = 4.69 ¢/kWh

Optimal Case:
l = 6.03 cm
n = 13.9 fins/module
Wnet = 10.11 MW
WTEG = 121 kW
Cost = 4.03 ¢/kWh
Cost function = -14.12%

Compressor

Combustor

Turbine Generator

P2 = 1.216 MPa
T2 = 642.3K

P4 = 1.216 MPa
T4 = 1500 K

P5 = 101.3 kPa
T5 = 914.9 K

Compressor Turbine Generator

P3 = 1.215 MPa
T3 = 790.6 K

P5 = 102.05 kPa
T5 = 916.2 K

P6 = 101.3 kPa
T5 = 769.3 K



Proof of Concept



Closing Remarks
• TEPSS environment has been developed for simulating and 

optimizing thermoelectric power generation systems.
• TEPSS is expandable with reusable and customizable 

components.
• New node domains and components can be added to increase 

potential system concepts.
• TEPSS will allow for the exploration of suitable applications for 

emerging TE materials while coupling module level design with 
system level performance and economics.

• Working on more robust steady state solver and optimization 
options and developing more advanced component models.

• Interest in using/testing contact rjseme@rit.edu

mailto:rjseme@rit.edu�
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Sample Component Class
classdef pump < handle     

properties (SetAccess=private)
design variables
component operating parameters

end

methods
function obj = pump(parameters) 

component setup
end

function e = compute(obj, node1, node2, onoff)
engineering models

end

function component_cost = cost(obj)
component costing models

end

function y = paramcheck(obj)
constraint and physical check models

end   
end

end



Optimization in TEPSS
• MATLAB fmincon optimization algorithm 

Constrained nonlinear optimization
• User supplies cost function
• Simulation determines steady state
• Cost function is evaluated at steady state
• New parameters are chosen by fmincon
• Repeat until cost function is minimized


