

Automotive Li-ion Battery Cooling Requirements

Brian Cunningham

Energy Storage R&D Hybrid and Electric Systems Team Vehicle Technologies Program

Wednesday, March 21, 2012

Energy Storage R&D: FY 2012

Energy Efficiency & Renewable Energy

CHARTER: Develop battery technology that will enable large market penetration of electric drive vehicles. • By *2014,* develop a PHEV battery that can deliver a 40-mile all-electric range and costs \$3,400

- By 2020, develop an EV battery that can store
- 40 kWh of electricity and costs \$5,000

Li- Ion Battery Capacity Decreases with Temperature

Freezing

-10

T/°C

 $I/mA/cm^2$

---- 0.2

-0- 0.3

-_____ 0.5

10

Useful energy from the battery decreases with decrease in temperature

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Impacts driving range and performance of vehicle

Vehicle Technologies Program

Relative Capacity / %

90

60

30

0

-50

-30

Battery Degrades Faster at Higher Temperatures: Calendar Fade

Energy Efficiency & Renewable Energy

Over time, useful energy from the battery decreases with exposure to elevated temperatures

Impacts driving range and performance of vehicle

Time

U.S. DEPARTMENT OF

Vehicle Technologies Program

Temperature affects battery:

- Operation of the electrochemical system
- Round trip efficiency
- Charge acceptance
- > Power and energy availability
- Safety and reliability
- Calendar life and life cycle cost

Battery temperature affects vehicle performance, reliability, safety, and life cycle <u>COSt</u>

Energy Efficiency &

Renewable Energy

Battery Pack Thermal Management Is Needed

- Regulate pack to operate in the desired temperature range for optimum performance/life
 - SHN =36.204 SHX =57.772

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

- Reduce uneven temperature distribution in a pack to avoid unbalanced electrical modules/pack and thus avoid reduced performance
 - Less than 3-4 $^{\circ}$ C

· 20-35° C

 Eliminate potential hazards related to uncontrolled temperatures – thermal runaway

6

Life Trade Off Analysis

ENERGY Energy

Energy Efficiency & Renewable Energy

Life expectation in various thermal environments

Compared with no cooling, the liquid-cooled battery can use 12% fewer cells and still achieve a 10-year life in Phoenix. Air cooling using low-resistance cells also seems appealing from a thermal / life perspective; however, this battery has the highest cell costs of the four options shown due to the cost of its high excess power.

Vehicle Technologies Program

Thermal Management Requirements for EV

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

ENERG

- EV-100 with 24 kWh energy and 100 kW peak power
- Average efficiency of battery pack at most demanding drive cycle: 95%
- Average power draw for most demanding drive cycle: 40 kW
- Average heat loss in the pack: 40kW*0.05= 2.0 kW
- Energy density of cells 150Wh/kg : battery mass: 24kWh/0.15kWh = 160 kg
- □ Temp rise/Sec: Q/m Cp = 2000/160/900 = 0.0139 ° C/Sec
- \Box Adiabatic T rise In 10 minutes = 8.33 $^{\circ}$ C
- Need 1-2 kW cooling systems for peak
- Heat transfer rejection rate needed: 10-100 W/m²/° C

Battery Heat capacity= 900 J/kg/C