

2012 THERMOELECTRICS APPLICATIONS WORKSHOP

High Reliability, High Temperature Thermoelectric Power Generation Materials and Technologies

<u>Jean-Pierre Fleurial</u>, Thierry Caillat, Bill J. Nesmith, David F. Woerner, Jack F. Mondt, and Gerhard Stapfer

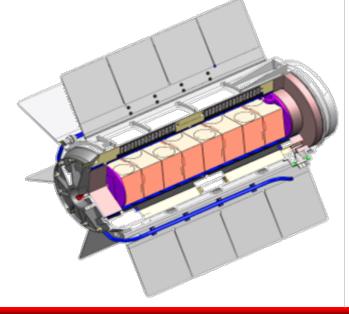
Jet Propulsion Laboratory/California Institute of Technology

jean-pierre.fleurial@jpl.nasa.gov

Baltimore, Maryland March 21, 2012

MMRTG-powered Mars Science Laboratory mission

Mars Science Laboratory



- Ability to operate in vacuum and planetary atmospheres
 - 23-36 V DC capability, series-parallel circuitry
- 17 years lifetime requirement
 - Up to 3 years of storage and up to 14 years of operation
- Ability to withstand high mechanical loads
 - $\sim 0.3 \text{ g}^2/\text{Hz}$ (random vibrations)
 - Up to 6000 g (pyrotechnic shock)

Beginning of Life Performance

~ 125 W ~ 2.8 W/kg

768 <PbTe + TAGS/PbSnTe> couples

RTG Technology - Missions

~~	Mission	RTG	TE	Destination	Launch Year	Mission Length	
	Transit 4A	SNAP-3B7(1)	PbTe	Earth Orbit	1961	15	MHW-RTG
SNAP-19	Transit 4B	SNAP-3B8 (1)	PbTe	Earth Orbit	1962	9	
	Apollo 12	SNAP-27 RTG (1)	PbTe	Lunar Surface	1969	8	
	Pioneer 10	SNAP-19 RTG (4)	PbTe/TAGS	Outer Planets	1972	34	
	Triad-01-1X	SNAP-9A (1)	PbTe	Earth Orbit	1972	15	
	Pioneer 11	SNAP-19 RTG (4)	PbTe/TAGS	Outer Planets	1973	35	
	Viking 1	SNAP-19 RTG (2)	PbTe/TAGS	Mars Surface	1975	4	
W _e , 3 W/kg % Efficiency	Viking 2	SNAP-19 RTG (2)	PbTe/TAGS	Mars Surface	1975	6	
ep space and planetary	LES 8	MHW-RTG (4)	Si-Ge	Earth Orbit	1976	15	
face operation	LES 9	MHW-RTG (4)	Si-Ge	Earth Orbit	1976	15	158 W _e , 4.2 W/kg
0 Year life demonstrated	Voyager 1	MHW-RTG (3)	Si-Ge	Outer Planets	1977	31	6.5% Efficiency Deep space operation
MMRTG	Voyager 2	MHW-RTG (3)	Si-Ge	Outer Planets	1977	31	>30 Year life demonstra
	Galileo	GPHS-RTG (2) RHU(120)	Si-Ge	Outer Planets	1989	14	GPHS-RTG
	Ulysses	GPHS-RTG (1)	Si-Ge	Outer Planets/Sun	1990	18	
	Cassini	GPHS-RTG (3) RHU(117)	Si-Ge	Outer Planets	1997	11	
0 W _e , 2.8 W/kg 3% Efficiency	New	GPHS-RTG (1)	Si-Ge	Outer Planets	2005	3 (17)	285 W _e , 5.1 W/kg
ep space and	Horizons						6.5% Efficiency Deep space operation
anetary	MSL	MMRTG (1)	PbTe/TAGS	Mars Surface	2011	3	> 18 Year life demonstr

RTGs have been successfully used on a number of long-life missions

TE Converter Configurations

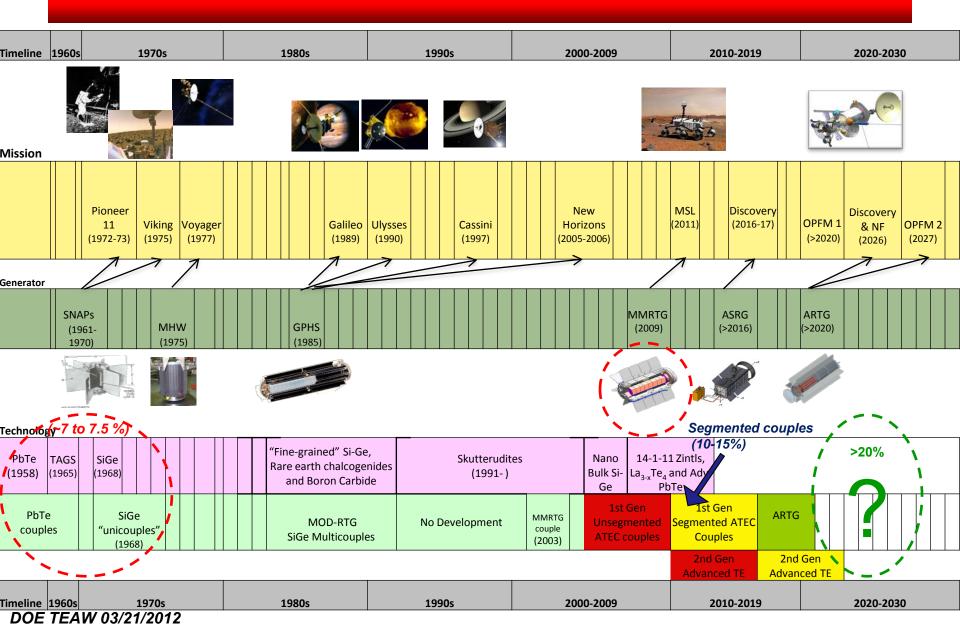
Couple Configuration	P-leg	N-leg	Heat Source Coupling	Program	
Segmented Couple	Bi ₂ Te ₃ /TAGS/PbSnTe	Bi ₂ Te ₃ /PbTe	Conductive	Terrestrial RTGs	
Segmented Couple	TAGS/PbSnTe	PbTe	Conductive	SNAP-19, MMRTG	
Segmented Couple	Si _{0.63} Ge _{0.37} /Si _{0.8} Ge _{0.2}	Si _{0.63} Ge _{0.37} /Si _{0.8} Ge _{0.2}	Radiative	MHW-, GPHS-RTG	
Multicouple	Si _{0.8} Ge _{0.2}	Si _{0.8} Ge _{0.2}	Conductive, Radiative	SP-100, MOD-RTG	
Segmented Couple	Bi ₂ Te ₃ /SKD*	Bi ₂ Te ₃ /SKD	Conductive	Segmented TE Couple (2002)	
Multicouple	SKD (Skutterudites)	SKD	Conductive	STMC (2005)	
Unsegmented Couple	Zintl	Nano Si _{0.8} Ge _{0.2}	Radiative	2008	
Unsegmented Couple	Zintl	La _{3-x} Te₄	Conductive or radiative	2009 ATEC	
Segmented Couple	SKD/Zintl	SKD/La _{3-x} Te ₄	Conductive or radiative	2011	
Segmented Couple	Adv. PbTe/Zintl	Adv. PbTe/La _{3-x} Te ₄	Conductive	2012	
Segmented Multicouple	SKD/Zintl	SKD/La _{3-x} Te ₄	Conductive or radiative	2012 Small FPS	
		N-RTG AT	EC STMC	SP-100 MOD-RTG	
Pan Pan	PLEG		1997		

Multicouples developed for higher power systems (space reactor, terrestrial) Arrays of discrete couples typically used for RTGs

P-doped Si_{0.78}Ge_{0.22} **P-**doped Si_{0.63}Ge_{0.37}

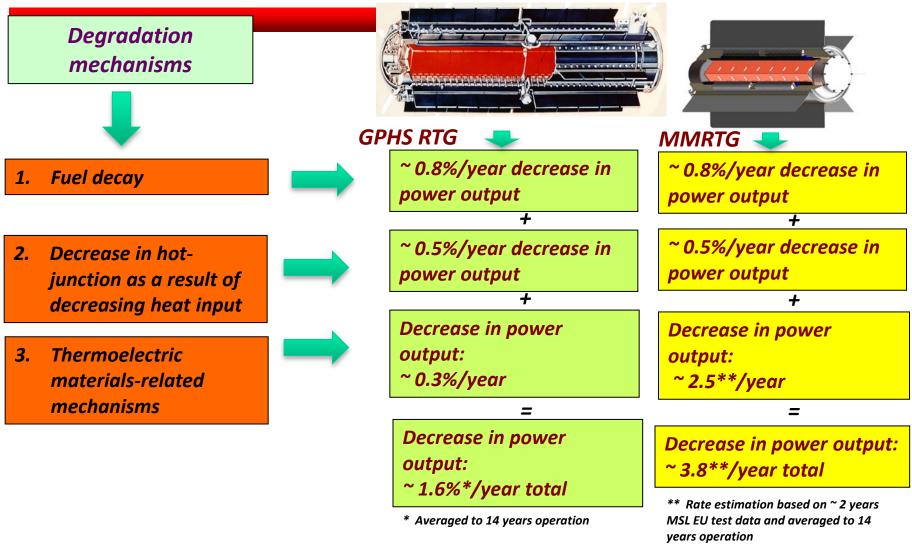
n-type leg

B-doped Si0.78 Ge0.22


B-doped Si0.63Ge

p-type leg 📻

High Temperature TE Materials RTG Technology Development Timeline



Lifetime Performance Validation

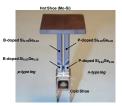
What controls RTGs Lifetime Performance?

TE-related degradation mechanisms can represent a significant fraction of the overall RTG degradation over time

Impact of key TE-related degradation mechanisms on RTG performance

Degradation mechanism	Key potential impact(s)	Impact(s) on RTG performance
Sublimation of TE materials (A major concern for most TE materials)	 Increase in electrical resistance Electrical and thermal shorts Promote the degradation of couple interfaces at the hot-junctions Potentially impact all other mechanisms 	 Reduced power Electrical isolation
Changes in TE properties (can be due to dopant precipitation, structural phase changes, phase segregation, electromigration, etc)	 Can reduce thermoelectric efficiency if lower ZT Lower temperature gradient across TE elements if increased thermal conductivity 	Reduced power
Increase in electrical & thermal contact resistances at interfaces (can be due to interdiffusion, microcrack propagation, etc)	 Increase in electrical resistance Lower temperature gradient across TE elements 	Reduced power
Increased conductance of thermal insulation (can be due to interactions between insulation packaging, TE materials and sublimation products, etc)	 Increased heat losses Reduced heat flux through the thermoelectric couples 	 Reduced power Thermal management

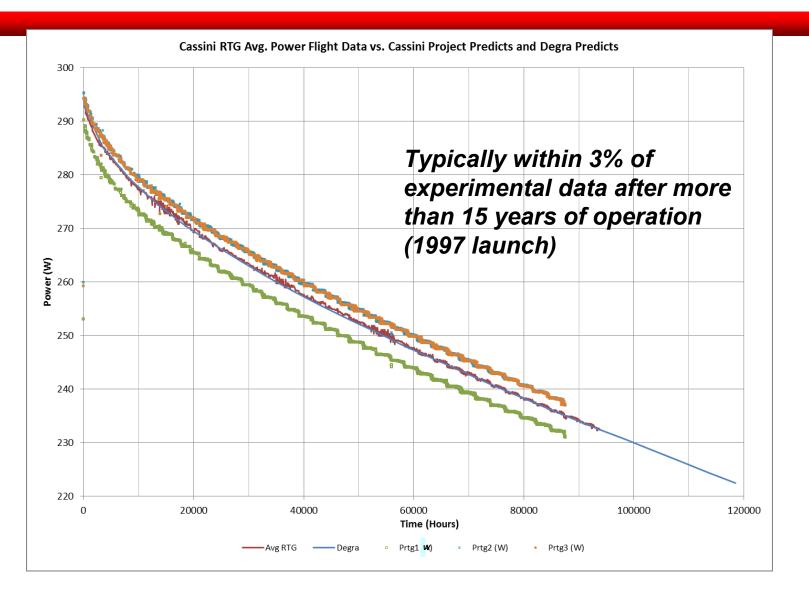
Each TE-related degradation mechanism can have a significant impact on overall **RTG degradation over time; must be tested for, quantified and modeled** DOE TEAW 03/21/2012


- Materials (TRL 1-3)
 - Stable TE properties vs. time & temperature demonstrated over > 1 year of testing
 - Control of sublimation rates down to 10⁻⁶ to 10⁻⁷ g.cm²/hr, verified over > 1 year of testing
- Couples TRL (2-4)
 - Stable electrical contact metallizations
 - Stable interfaces to hot and cold shoes, between TE segments
 - Maintain mechanical, thermal and electrical integrity
 - Greater than 5 years life predicted based on normal and accelerated testing

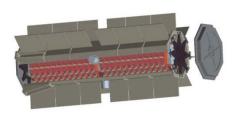
<u>Couple Arrays (TRL 3-5)</u>

- Use of prototypic couples
- No interaction with thermal insulation, verification of mechanical integrity
- Greater than 3 years of testing
- Electrically heated Power Demonstrator (EPD, 18-couple) (TRL 4-5)
 - Demonstration of thermal and electrical efficiencies at subscale system level
- ETG (TRL 6)
 - Validation of thermal and electrical efficiencies at full scale system level
 - Qualification testing
- Life Performance Model
 - Materials properties and test data used to predict long term performance
 - Provide Mission planners with performance profile during various scenarios and operation phases

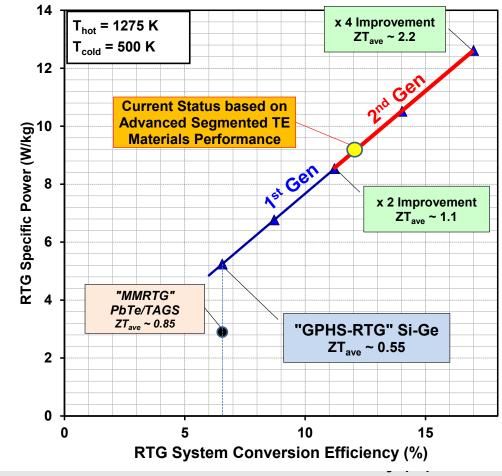
Well defined technology development roadmap to establish lifetime performance of RTGs



GPHS-RTG Data & Lifetime Performance Predictions



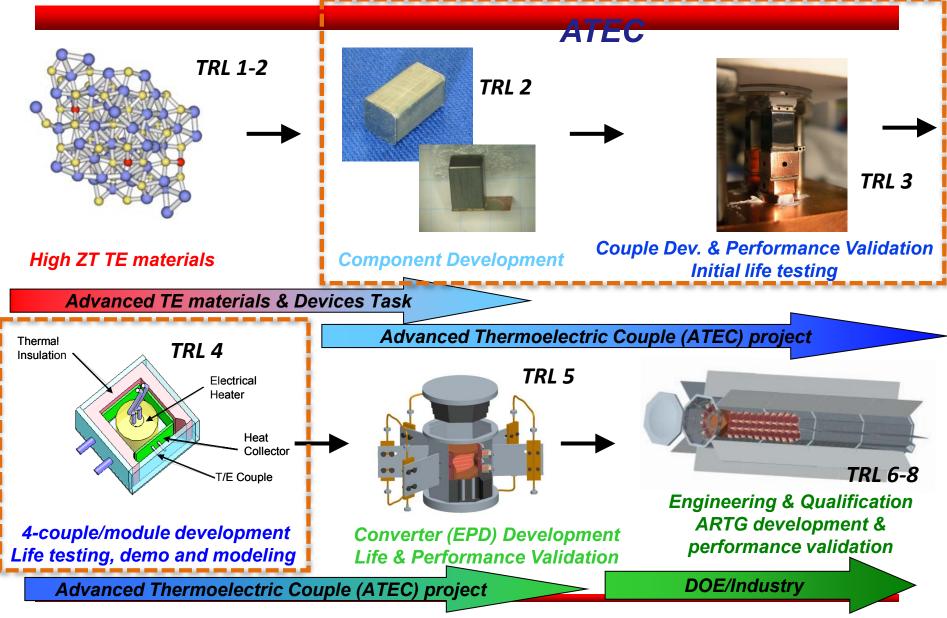
High Temperature TE Couple Technology Development for Next Generation Space Power Systems


Impact of Higher Performance Materials on

Thermoelectric Power Systems for Space Exploration

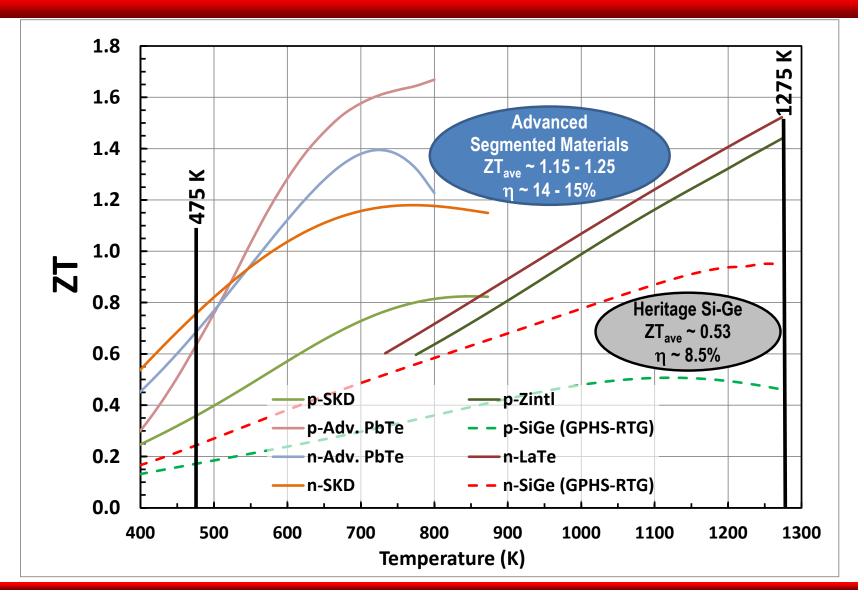
T_{hot} = 1100 K to 1275 K (higher is better!)

Lower System Mass and Higher Conversion Efficiency Needed (x2 to 4)

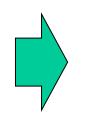

Advanced RTG Specific Power vs. System Conversion Efficiency (Based on radiatively coupled vacuum operation unicouple based RTG concept)

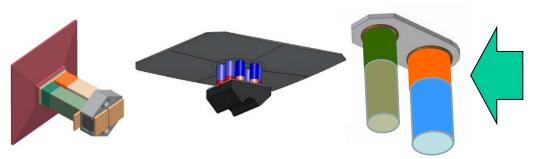
<u>Ultimate goal: > 15% efficient, >10 We/kg Advanced RTGs</u>

Advanced RTG Technology Development Path

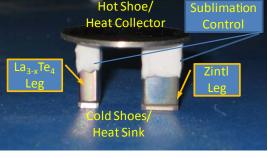


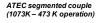
Baseline ATEC advanced TE Materials Large performance gains over heritage Si-Ge alloys

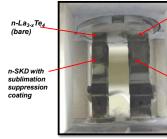




Couple Configurations in Development JPL



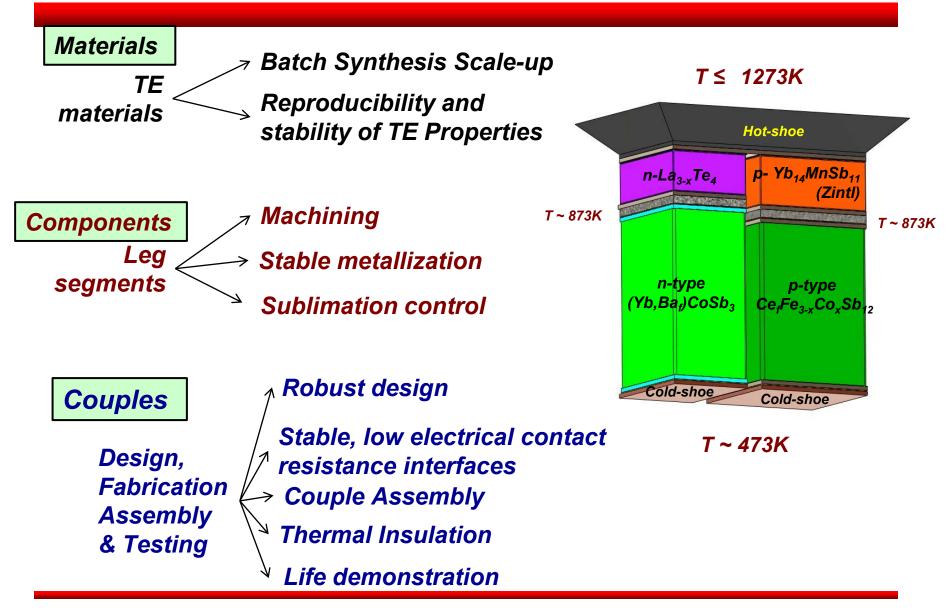

Zintl (Yb₁₄MnSb₁₁) / NanoSiGe Couple (2007-2009)



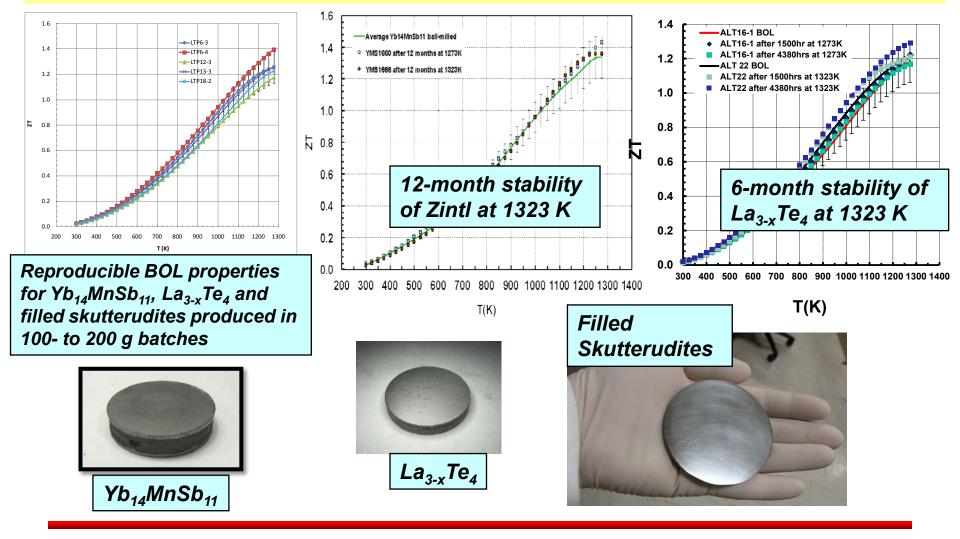
*Zintl // La*_{3-x}Te₄ *Cantilevered and Springloaded Segmented Couples for Life Performance validation*(2012-2014)

Zintl (Yb₁₄*MnSb*₁₁) / La_{3-x}Te₄ *Couple* (2009-2010)

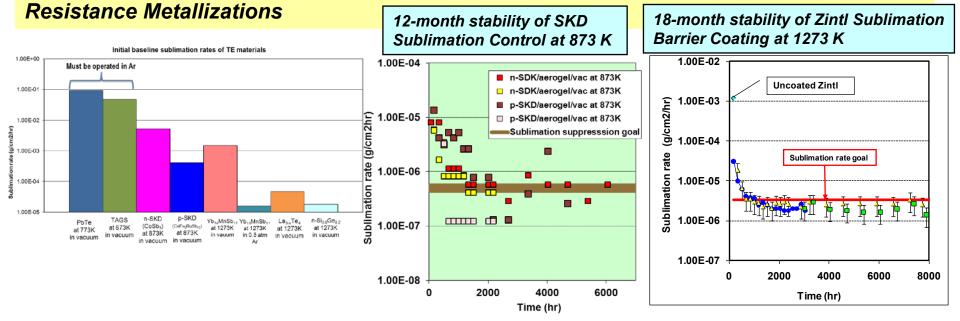
p-Zintl with sublimation suppression coating

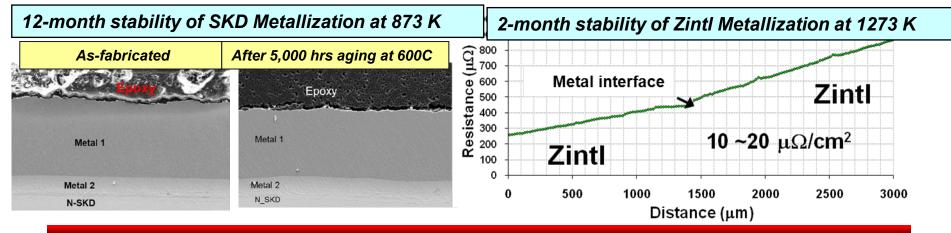

n-SKD with sublimation suppressio n coating

Zintl/SKD // La_{3-x}Te₄/SKD Segmented Couple (2010-) Zintl/Adv.PbTe // La_{3-x}Te₄/Adv.PbTe Segmented Couple (2012 -)



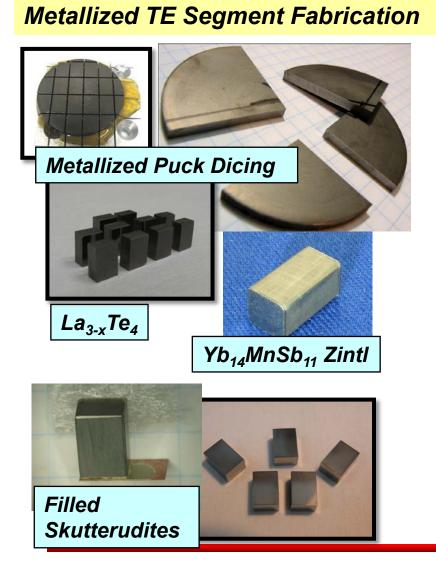
Materials, Components & Couple Development Challenges

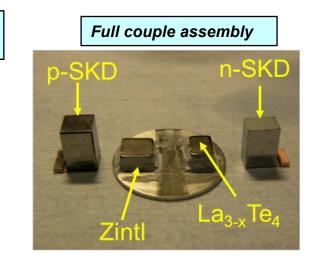




Powder Metallurgy Synthesis Scale-up and Reproducible TE properties

Sublimation Control for TE Materials and Thermally Stable Low Electrical Contact

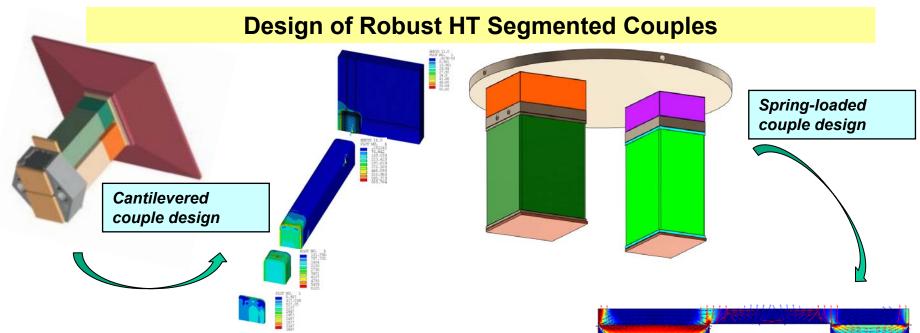




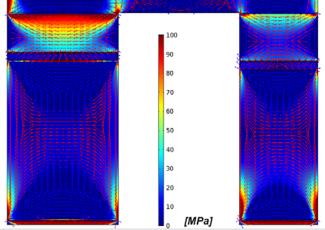
Stand-alone

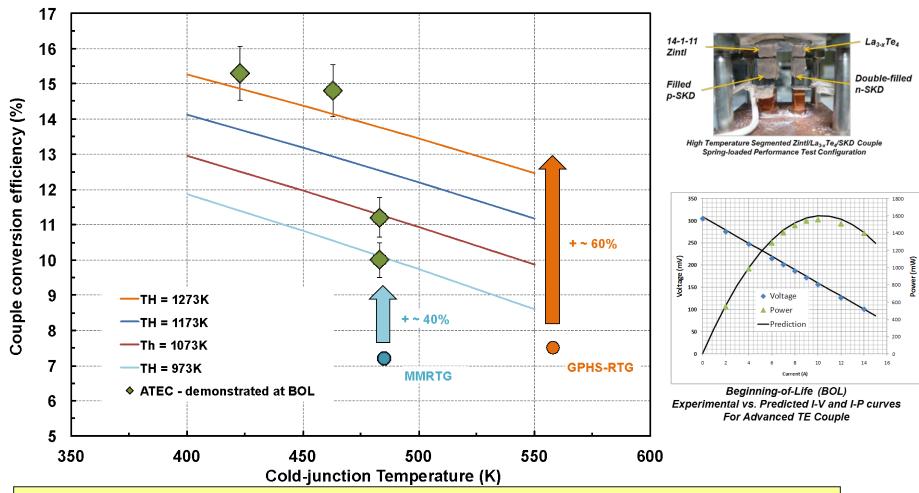
Segmented Legs

Couple Assembly and Test



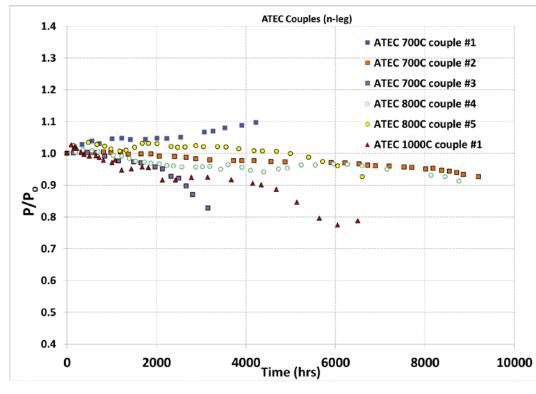
Sublimation Control and Thermal Insulation Packaging into Spring-loaded Test Fixture

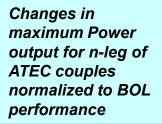




- Detailed Finite Element Analysis (ANSYS, COMSOL)
- Supported by experimental data on temperature dependent mechanical and thermal properties on TE materials, electrical and thermal interfaces
- Coupon-level demonstrations
- Couple-level validations
- Extensive life testing

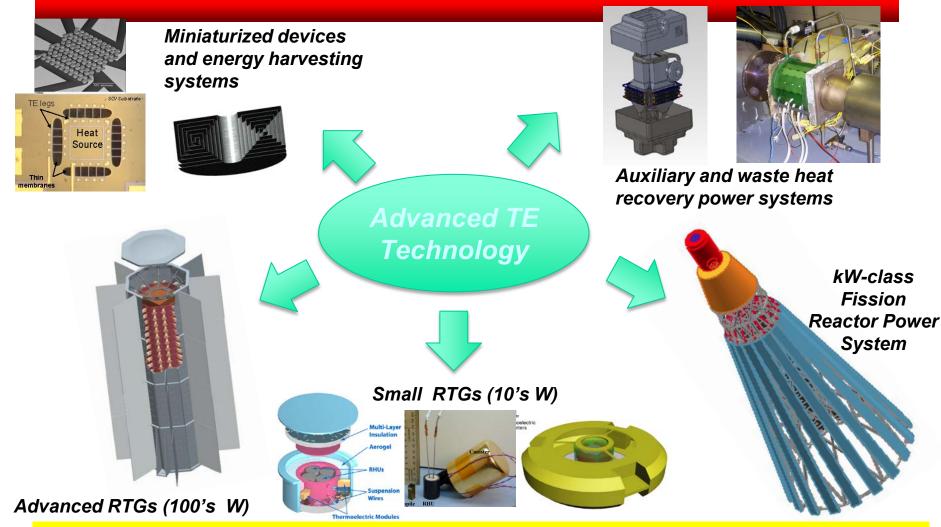
1st iteration for 1st Gen Segmented Couple testing – Demonstrated BOL efficiency –




Demonstrated large increases in couple efficiency over MMRTG and GPHS couples. ~ 15% efficiency for 1273 -463 K operating temperature range

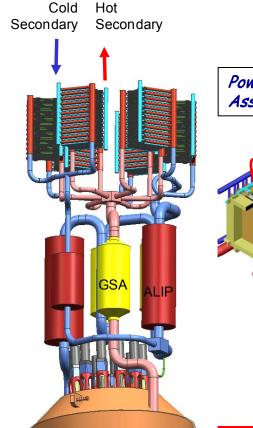
1st iteration for 1st Gen Segmented Couple testing

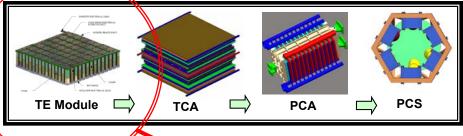
- Several couples have now been tested for up to 9,000 hours and at hot side operating temperatures ranging from 973 K up to 1273 K
- Long term performance degradation mechanisms have been identified; next iteration of couples will integrate small modifications to minimize degradation
 - Will be implemented later in FY12



Potential for Terrestrial High Grade Waste Heat Recovery Applications

Advanced TE Power Systems


Advanced high temperature TE technology being developed for space power systems could also be applied to terrestrial Waste Heat Recovery and auxiliary power systems



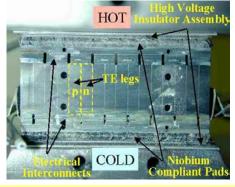
Nuclear Electric Propulsion or Primary Power for Space Exploration and Science Missions

- Technology development was focused on arrays of thermoelectric couples grouped into power converter assemblies
- Used liquid metal heat exchangers to interface with reactor heat source and radiator heat sinks

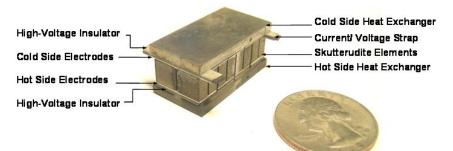
Power Converter Assembly

Development of robust high temperature thermoelectric module technology is critical to all applications

- Using low cost, practical fabrication techniques and relatively inexpensive materials (including thermoelectrics)
- Ability to integrate with various heat exchangers
- Ability to reliably survive thermal/mechanical stresses

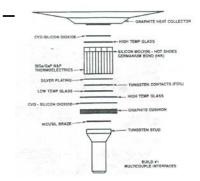


Mechanically Compliant High Temperature TE Module Technologies at NASA/DOE/JPL

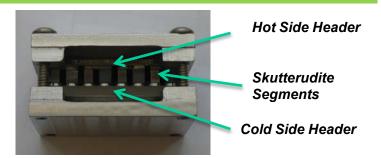

SP-100 SiGe Multicouple (1990s)

- Conductively coupled on hot side with built in compliant pads
- Tested for up to 25,000 hours

Designed for integration with flat plate HXs, 873 K - 1273 K Steady State Hot Side operation


Skutterudite Module Developed at JPL under NASA/SMD In-Space Propulsion Program (2004-2005)

Designed for integration with flat plate HXs, 473 K - 873 K Steady State operation


MOD-RTG SiGe Multicouple Technology (1980s)

 Graphite heat collector, bolted on radiator side

Designed for radiative coupling in RTG, 573 K -1273 K Steady State operation

Segmented Module under development for portable power system (2011-2012)

Designed for integration with high efficiency HXs, 400 K - 1223 K operation with multiple thermal cycles in vacuum or atmospheric environments

- Successfully completed the development of first generation Advanced High Temperature TE materials
 - Developed first generation TE materials with x2 ZT_{ave} improvement
 - Transitioned several first generation TE materials for engineering development of couples
- The majority of risks at the first generation TE materials and components levels have been retired
 - Demonstrated long term stability of first generation TE materials
 - Components-level life demonstrated through extended tests (up to 11,600 hours)
- Demonstrated up to 15% BOL efficiency with segmented TE couples
 - Work is in progress to demonstrate life performance capabilities
 - Without life, high ZT does not matter!
 - Fabricated and conducted up to 9,000 hrs of life assessment for 1st iteration ATEC couples
 - Still some work to be done to retire most significant degradation mechanisms but there are no "show stoppers" so far
- New technology could be applied to selected high temperature waste heat recovery applications
 - Availability of rugged TE couple & modular devices is a must to enable new applications

- This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration
- The work presented here benefited from contributions from a number of collaborators in the past few years
 - California Institute of Technology
 - University of California at Los Angeles, University of California at Davis
 - California State Polytechnic University, Pomona
 - Ole Miss, University of Southern California
 - Michigan State University
 - ATA Engineering
 - Teledyne Energy Systems
 - HS Rocketdyne