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Project Overview - Plastics Economy Circular Economy Model

* Context: GHG emissions from the global plastic economy are expected to increase to 15% of the global carbon
budget by 2050. Integrating system dynamics into a robust plastics model that already incorporates techno-
economics, circularity, and environmental impacts will enable identification of key bottlenecks between
manufacturers, waste sorters, and reclaimers that currently prevent rapid decarbonization of the plastics
economy.

 This model can help to understand what technologies provide the most benefit for different materials and
what improvements in the plastics economy can provide the most benefits.

* Goal: Evaluate how to minimize the GHG emissions from the U.S. plastics economy and how can we optimize
the use, reuse, and recycling of PET bottles to reduce the impact of the plastic sector as it is projected to
grow. Provide an understanding of the range of different pathways to maximize keeping plastic materials in
the economy and providing value to society and evaluate the benefits and impacts associated with the
different pathways.

 Model informed by data from The Recycling Partnership (TRP) and from BOTTLE (BioOptimized Technologies
to keep Thermoplastics out of Landfills and the Environment) Consortium analysis.

* Project Lead: NREL - Alberta Carpenter (Pl), Taylor Uekert, Tapajyoti Ghosh, Julien Walzberg

_ FY21 Costs FY22 Costs FY23 Costs Total Planned Funding

DOE Funded $156K $140K $133K $429K
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Overview: Analysis and its role in BOTTLE

Analysis is foundational to BOTTLE s mission

» Develop robust processes to upcycle existing waste plastics, and

» Develop new plastics and processes that are recyclable-by-design

* Analysis-guided R&D aligns with DOE’s Strategy for Plastics Innovation

Economic, environmental, and comparative analysis

* Model new processes and analyze energy, carbon, cost, and GHG
emissions metrics to determine their feasibility and key driving variables

» Compare these results against incumbent technologies

Framework for analysis proposed in 2022 reviewl
» |dentify impactful areas for R&D
* Guide technologies towards a circular and sustainable plastics economy

[1] S.R. Nicholson, J.E. Rorrer, A. Singh, et al., Annu. Rev. Chem. Biomol. Eng. 2022 Image sourced from reference at left and S.R. Nicholson, N_A. Rorrer et al_, Joule 2021
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Analysis Approach

Techno-economic analysis (TEA) and life-cycle assessment (LCA) conducted across multiple scopes

Economics and sustainability assumptions follow transparent / open-source practices in EERE-funded R&D:
framework published in recent review?!

Analysis is an iterative process that occurs in parallel to laboratory R&D
Communication with each task through fortnightly team meetings and internal task meetings
Select risks include data availability and ability to incorporate feedstock variability and quality into models
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[115.R. Micholson, J.E. Rorrer, A. Singh, et al., Annu. Rev. Chem. Biomol. Eng. 2022, current technologies
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Case study I: PET enzymatic hydrolysis

Economic feasibility! Environmental impact? Goal: benchmark PET enzymatic recycling
3.5 : : versus virgin PET manufacturing and
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[1] A. Singh et al. toule 2021 [2] T. Uekert et al. Green Chem. 2022
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Frocess steps

Product & co-product recovery

BOTTLE Research Insights
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Industry wide: utilize electricity from renewable sources and steam from non-fossil processes

Proposed interventions

Improvements across many of these process areas will likely be necessary for scale-up of enzymatic recycling
Tradeoffs: many inexpensive components (water, steam, waste, etc.) are costly from an environmental perspective

( T. Uekert et al. Green Chem. 2022
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Quantification and evaluation of plastic waste in the United States

This work indicates that we need to ’\ h

understand C Q

 how to increase how much plastics are
going to recycling and

* how to reduce how much plastic is Plastic Waste

going to landfills Managedin 2019
44 Mt

To answer this, we use a systems

approach

 layering in systems dynamic and agent-
based modeling

« to understand better where the losses
are occurring and

« what are the technical, economic and
social drivers

Landfilled, 86%

Milbrandt et al, Resources, Conservation
and Recycling, 2022,

@1 IVIADE
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Overarching framework summary

End-of-life pathways are
compared with the Plastic
Parallel Pathways Platform (4P)

Framework currently focuses on PET bottles but could
be applied to any material
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Comparing closed-loop recycling options

« Compared plastic-to-plastic technologies for PET, HDPE, per A worse < —>- bt
LDPE, and PP across cost, environment impact, and Mechanica! . o &y
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T. Uekert et al., ACS Sustainable Chem. Eng. 2023, 11, 965-978. -
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Leveraging a suite of solutions ,

(Technical constraints
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Expanding to open-loop recycling options

0g * Closed-loop recycling technologies are just one piece of the
up-cycling ( plastic landscape. How can we compare plastic-to-x options?

* Methodology:

closed-loop
\ recycling ‘
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T. Ghosh et al., J. Clean. Prod. 2023, 383, 135208.
T. Ghosh et al., in peer review, 2023.
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Assessed technologies

 Closed-loop recycling: glycolysis (best chemical recycling performance from previous work)
* Down-cycling: mechanical recycling to lower quality PET chip

* Up-cycling: chemical process + bio-based chemicals to make glass fiber reinforced plastic
(GFRP)

* Energy recovery: incineration (electricity) or pyrolysis (fuel)
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T. Ghosh et al., in peer review, 2023.
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Comparing open-loop recycling options

* Glycolysis offers most benefits

No recycling 0.342 (4)
overall, closely followed by _ .
mechanical recycling Incineration 0.337 (5)
o _ :

* Upcycling to GFRP has lowest § Mechanical recycling ] 0.371(2)
greenhoqse gag (GHG) gmissions & 0 Glycolysis I 0.402 (1)
highest circularity, but highest cost )

Pyrolysi 292

« No recycling (landfill) has lowest yrolysis 0-292(6)

cost Up-cycling X . 0.366 (3)
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T. Ghosh et al., in peer review, 2023.
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Optimal recycling combinations

* Brute force algorithm varies end-of-life pathway mix 1,000x to find local optimum that
minimizes GHG emissions and cost and maximizes circularity.

* Mechanical recycling + glycolysis + up-cycling = reduce GHG emissions by 23%, increase
costs by 52%, and increase circularity from O to 0.13 relative to landfilling.

Optimization of pathway mix only

A B
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0
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T. Ghosh et al., in peer review, 2023.
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Summary

* Provided baseline costs, environmental impacts, and technical capabilities of closed-
loop plastic recycling technologies

« Developed flexible framework for consistently comparing open-loop plastic
technologies

« Showed a combination of mechanical recycling, glycolysis, and upcycling can reduce
Impacts (at the tradeoff of cost)

FOOD FOR FUTURE WORK

THOUGHT Add more plastic types and other recyclabe

materials to open-loop analysis.

There is no “silver bullet” — we Add composting pathway
need combinations of technologies Add reuse pathway
Scale is important — how much Add effects of plastic policies/targets.

recycled product do we actually
need?
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Avoided impacts from higher PET waste collection
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Summary

« Recycling behaviors are highly contextual making “one-size-fits-all” solutions sub-optimal
o ABM is calibrated using Census Bureau and other data to fit reported PTE bottle state-specific recycling rates
o Results show that known interventions affect populations differently depending on their characteristics
o Results agree with the literature (the recycling partnership, resource recycling, OECD)

« Limitations:

Data had different geographical resolutions, some defined at the block group level, others at the state level, and some
at the national scale

o Behavioral interventions may affect households differently than what we assumed

Focusing on disposal behavior may miss how series of behaviors form intricate patterns: decisions and actions
throughout the day may affect disposal behaviors

O

* Possible next steps:
o Further investigate which interventions are the most effective (e.g., % additional recycling / $) in each state

o Apply the model to a case study with a finer resolution (e.g., a single state at the county or census track level)

o Apply the model to other containers and packaging materials
o Collaborate with the recycling partnership on a case study (they provide data, we provide modeling capabilities)
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