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Project Overview

* Develop an approach utilizing in-situ sensing to accelerate the additive manufacturing

processing development for thermoelectric materials in laser powder bed fusion
— This project will advance additive manufacturing technology for energy conversion materials
— Traditional process development takes a significant amount of time, and the processing-properties
relationship for energy conversion materials in additive manufacturing is unknown
— This work will impact accelerated domestic adoption of additive manufacturing for thermoelectric

devices

Energy, Emissions, & Environment:
Improve energy conversion efficiency

Cost & Competitiveness:
Reduce material waste and processing time

Technical & Scientific:
Understand processing-properties
relationship for improved properties

Other Impacts:

Establish criteria for accelerated
manufacturing quality assurance

* Collaborative project between university and industry (small business)
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Project Outline

Innovation: Develop an approach utilizing in-situ sensing to accelerate the additive
manufacturing processing development for thermoelectric materials in laser powder bed fusion.

Project Lead: Wright State University

Project Partners: Colorado School of Mines, George Washington University, Open Additive- an
ARCTOS Company

Timeline: 8/15/2020 — 05/15/2023 , 98%
Budget: DOE- $S500,000, Cost Share- $140,567, Total- $640,567

_ FY21 Costs FY22 Costs FY23 Costs Total Planned Funding

DOE Funded $134,749 $211,489 S153,762 S500,000
Project Cost Share S32,795 $78,605 $29,167 $140,567

End Project Goal: When fabricating Bismuth Telluride with laser powder bed fusion additive
manufacturing, achieve >95% relative density and achieve a Seebeck coefficient and electrical

resistivity comparable to traditional manufacturing
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Thermoelectric Devices

Traditional Manufacturing Thermoelectric Module
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Alloving * Limited geometries
* Significant material loss
* Interface & integration challenges
J090 * Lengthy processing time
w o o * Rudimentary assembly
o fppication e Additive manufacturing could

S. LeBlanc, Sustainable Materials & Technologies (2014)
solve many of these challenges!
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PBF-LB Process Development

* PBF-LB of Bi,Te; pioneered by Dr. LeBlanc at GWU

 Challenges:

Bi, Te; powder is difficult to spread and laser process

« AM is controlled by many processing parameters

e Parameters:

e Laser power (10-30 W)

* Laser speed (300-700 mm/sec)
e Hatch spacing (10-37.5 um)

e Layer thickness (100-150 um)
e Laser focus (~30-100 um)

* Single or Double Scan

* In-situ sensing and machine learning can help
accelerate process development
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In-Situ Sensors

Tomography Polarimetry

Thermal tomography
* 12 MP long exposure CMOS NIR camera produces
composite integrated thermal response

Polarimetry
* Polarized images post spread and post melt

Spatter
e 2 MP high frame rate camera (150 fps) that detects
ejected particles
» Melt pool- red
» Confirmed spatter- green
Long wavelength IR
* Observes thermal signatures, not reflected light

 Temperature measurement during cooling
* Low spatial resolution Spatter LWIR

— Relatively low-cost sensors viewing entire build (V=N
platform _,ﬁ,,_:“:”ﬁ;z . A‘? C T O S | All In.

Max Temperatures - Layer 18
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Our Process Development Approach

* Fabricate samples and collect in-situ sensor data across a range of
processing parameters and measure thermoelectric properties

— A significant amount of data is needed for machine learning O

— Measured thermoelectric properties for 100+ samples MINES
* Treat each layer of build as a data point

— Processing parameters- Same for all layers GW

— Sensor data- Different for each layer =N

— Thermoelectric properties- Same for all layers ADDITIV="

e Build machine learning models to predict processing-properties | ,
. . WRIGHT STATE
relationships UNIVERSITY

— Select most relevant features
— Optimize processing for thermoelectric performance
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Machine Learning Model Development WRIGHT STATE

UNIVERSITY
Feature Importance Model Performance
S.  Feature Mean score and Classification Model P R F1 AUC  Acc.
No. standard deviation -
1. Laser Focus (mm) 0.142 +/- 0.007 Naive Bayes 0.72 0.72 0.72 0.77 0.72
g- gowegm ) 8823 I; 888; Logistic Regression 0.68 068 0.68 0.76 0.68
. pee s . - 0. .
4, Polarimetry post spread AoP roughness  0.033 +/- 0.005 Linear SVM 0.68 0.68 0.68 0.75 0.68
2- Iﬁafer- (mm) AP 8-8;0 +§- 8-882 Polynomial kernel SVM  0.68 0.67 0.67 0.75 0.67
R o A oSS o 6.000 RBF kernel SVM 068 068 068 075 0.8
8.  Polarimetry post spread AoP std 0.017 +/- 0.005 Decision Tree 088 088 0.88 097 0.88
9. Tomography roughness 0.014 +/- 0.003
10.  Polarimetry post melt DoLP std 0.013 +/- 0.004 Random Forest 089 085 089 097 0.89
11.  Polarimetry post melt AoP std 0.012 +/- 0.005 AdaBoost Classifier 088 088 0.88 0.88 0.88
12.  Polarimetry post spread DoLP max 0.012 +/- 0.004 . .
13, Tomography median 0.011 +/- 0.004 Baggmg Classifier 090 090 090 0.98 0.90
14.  Tomography avg 0.010 +/- 0.003 Multilayer perceptron 074 073 0.73 0.79 0.73
15.  Polarimetry post melt AoP median 0.010 +/- 0.004 . D. - - ) ] ;
Noter AoP: Angle of polarization, DoLP. Degrec of Tinear Note.. P: Prec:lsu?n, R: Recall, Fl F1 score, AUC: area under the
polarization, std: standard deviation, max: maximum, avg: average Receiver Operating Characteristic Curve, Acc.: Accuracy

 Machine learning models are developed to connect processing features to

Agarwal, A., Banerjee, T.,

thermoelectric properties Gockel, J., LeBlanc, S.,
Walker, J. and. Middendorf,
° Many top features are processing parameters J., 2023. Predicting

Thermoelectric Power

Factor of Bismuth Telluride

During Laser Powder Bed
. . . Fusion Additive

e Use of advanced models improved prediction performance Manufacturing, arXiv

preprint arXiv:2303.15663.

— Inclusion of some monitoring features means not all processing influences are captured

— Final parameter optimization is currently in progress
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Porosity O
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Joy Gockel; Tanvi Banerjee; Saniya LeBlanc; Joe Walker; Vijayabarathi Ponnambalam; Amanuel Alambo; Clayton Pores > 4“ m
Perbix; Ankita Agarwal; John Middendorf, Accelerating Additive Manufacturing Process Design for Energy Conversion
Materials using In-situ Sensing and Machine Learning, TMS Annual Conference, San Diego, CA, 03/2023
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Thermoelectric Properties GW

— A large range of properties were achieved at different parameters
 Want a High Power Factor (High Seebeck and Low Rho)

* Desired Seebeck and Rho achieved, but not power factor (S%/p)
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Saniya Leblanc; Yahya Oztan; Ryan Welch; Bengisu Sisik; Vijayabarathi Ponnambalam, Process-Structure-Property Relationships for Laser Powder Bed Fusion of
Thermoelectric Materials for Low and High Temperature Applications, TMS Annual, 03/2023
Saniya Leblanc, Leveraging Additive Manufacturing to Tailor Thermoelectric Device Configuration, Leg Shape, and Transport Properties, TMS Annual, 03/2023
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Future Work, Technology Transfer, & Impact

Future Work:

* Final print with optimized parameters currently being completed

— Future studies of microstructure influence on properties, geometry effects and mechanistic sensor
response planned

Technology Transfer:

e Further processing development (contours, downkins, upskins) is required for fabrication of
complex shapes

 Commercialization possibility for unique PBF-LB processing equipment for difficult to spread
powder and new sensing techniques by Open Additive

— Funded DURIP for George Washington University to purchase Open Additive developed system
for processing Bismuth Telluride

Impact:

* Incorporating in-situ sensors during process development will accelerate process-properties
understanding and establish baselines for quality assurance for manufacturing of novel
thermoelectric geometries
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Questions?

Accelerating Additive Manufacturing Process Design for Energy Conversion
Materials using In-situ Sensing and Machine Learning| AMMTO

Tanvi Banerjee, Wright State University; Joy Gockel, Colorado School of Mines

joygockel@mines.edu

Temperatures - Layer 1

ES!
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