

CYMANII

MANUFACTURING IS undergoing a DIGITAL TRANSFORMATION.

20%

Annual energy savings by manufacturers who digitize.

Manufacturers are digitizing at twice the rate of other businesses.

2_x

Today's "Secure Architectures"

Presently a Misleading terminology

Connotes a conjoining of perimeter defense + data security

Poor security controls that are applied only to a limited aspect of operations or supply chain

Little, or no, context of real physical world consequences

Often aligned to compliance requirements only

Versus "CyManll Defensible Architectures"

The Digital Engineering Lifecycle must be addressed across the entire supply chain

- Every operation, machine, and person is a "node" in this digital design (supply chain is seamless with operations)
- Every node is captured in a cyber-physical identity (passport) that is used for:
 - Guarantees of physical functions
 - Linkage of security to product quality and energy / emissions efficiency (embodied energy)
- Verifiable security properties that are extensible to multiple domains

Cyber-Physical Passport: makes your supply chains "born qualified" and "rooted in trust"

CyManll's Vision

is to secure U.S. manufacturers as they digitize by fortifying their physical systems with embedded cybersecurity and energy-efficient solutions.

E-PURE

2

3

Secure the digital thread

Secure. TOGETHER

Create a cyberinformed workforce

- Build defensible architectures
- Create identify-centric cyber-physical passports
- Secure a decarbonized ecosystem

- Partner across industry's supply chain
- Cooperate across Govt stakeholders
- Focus on:

 Manufacturing Sectors
 Critical Energy Infrastructure
 Data and beyond...

- Focus on OT / ICS security
- Leadership on CIE
- Empower current workers
- Expand emerging workforce (students)

CYMANII MANUFACTURING ROADMAP 2021:

Our Team

the cybersecurity manufacturing innovation institute **Dur Members**

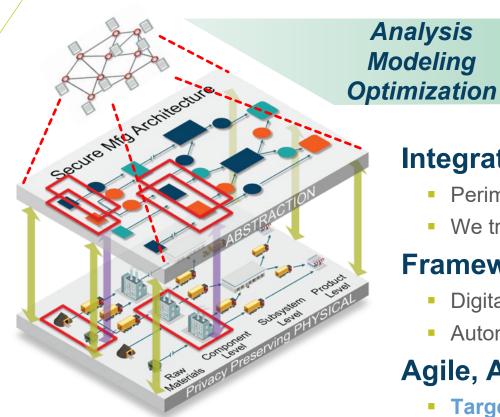
300+

technical staff scientists and engineers with over 100 FTE developing SDA and other secure by design products and architectures

60+

members from industry, DOE Laboratories, non-profits, other MII's, and universities

CyManll's Expansive Membership Network



Secure Defensible Architecture (SDA)

Maximize E&E Efficiency

Maximize Production

Minimize Risk

Integrated Model of Automation & Supply Chain

- Perimeter defenses insufficient in modern digital design lifecycle
- We treat Automation as nodes in Supply Chain network

Framework for Security & Efficiency Across "Sectors"

- Digital identity = physical + cyber + energy (Cyber-Physical Passport)
- Automation activities validated across supply chain

Agile, Adequate, & Consequential Formalism to Validation

- Targeted formal methods and evidential basis for design & implementation
- Continuous Integration/Deployment (CI/CD) in manufacturing context

Unify security across the digital thread of design, build, deliver for industries of all sizes

Cyber-Physical Passport enables digital provenance tracking through verifiable security guarantees.

Traceability across supplier boundaries.

Using a global ledger as well as physical and *virtual* watermarks, the CPP follows a product through its value chain, crossing suppliers and staying with the end product.

Verification of the digital thread.

Formal verification methods are used to continually assess the critical code along the product's lifecycle for accuracy and evidence of compromise.

Tamper-proof ledger.

The data captured in the CPP is protected and anonymized with use of a unique hash and permissioned blockchain where entities logging transactions are first authenticated.

Improved protection & system hardening.

A secure manufacturing architecture along with a multi-physics digital twin provide enhanced cyber protection and high-fidelity monitoring.

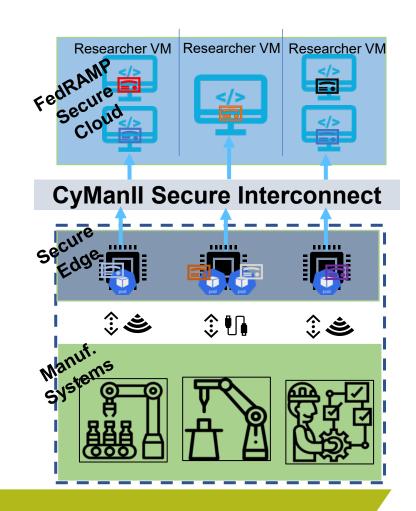
SDA Project Update: Cyber-Physical Passport on CNC parts

Results to Date: A key concept in SDA is automatically deploying a **Cyber-Physical Passport (CPP)** to support system hardening, provenance tracking, process verification, and attack monitoring:

- Needed both locally at the manufacturing site and across companies along the product's supply chain.
- CyManII demonstrated the CPP on a CNC's aluminum parts productions and verification of the parts' **digital authenticity** against intended **design** (@ONRL MDF).

Future Work: Expand SDA framework and tools to support multiple innovations through **Industrial Use Case** pilots.

- Additive Manufacturing
- Smart Manufacturing enterprise (CESMII)
- Energy components supply chain

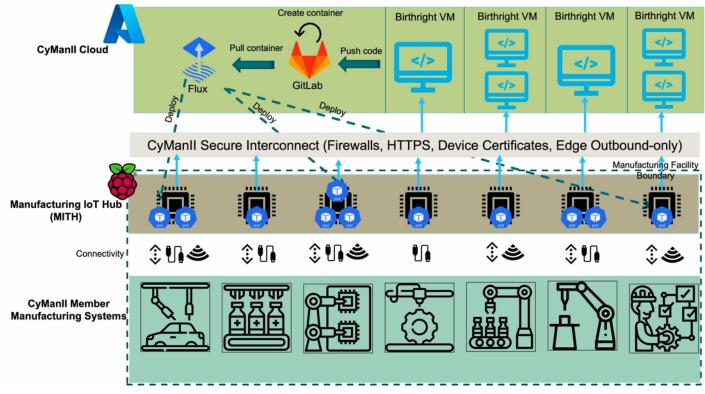


Secure Research and Development Infrastructure (SRDI)

Inherently incorporates security, agility, and automated updates

- Innovation-independent ecosystem to automate adding cybersecurity across "domains"
- Rapidly share innovations between researchers and product owners for collective benefit
- Secure build chain with code quality and security checks
- □ CI/CD: Continuous integration/ continuous deployment
- Legacy protocols secured as new verifiably secure architectures incrementally developed and deployed
- Local/scalable compute and secure storage supporting new secure architectures, whitelisting, and enforcement tools

Enable, accelerate, and securely share innovations across industry partners



SRDI Project Update: Secure Pilots at ORNLMDF

Results to Date: SRDI provides the secure development environment needed accelerate, integrate, and validate innovations.

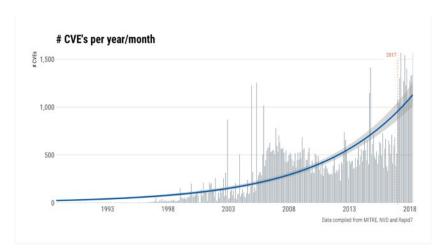
- CyManII architected and operationalized key features of SRDI, with secure FedRAMP cloud hosted at UTSA linked to ORNL's Manufacturing Demo Facility (MDF).
- SRDI was used to conduct 12 different demonstrations of how it can be used to support secure research.

Future Work: Expand research nodes to additional partners, additional code check tools, **Industry Use Case** integrations

Cybersecurity Vulnerability Challenge

Challenge:

- Vulnerability trends significantly favor the attackers, present systems are not "defensible".
- If we continue to reactively chase and patch vulnerabilities, we will "lose the war" for national & economic security.


New Approach:

- Identify Cyber Weakness Enumerations that capture thousands of vulnerabilities at a time (1:10,000+)
- Create methods and tools that can systematically identify and eliminate/mitigate weaknesses
- Address these CWE's in a priority fashion to cyber secure US Manufacturing

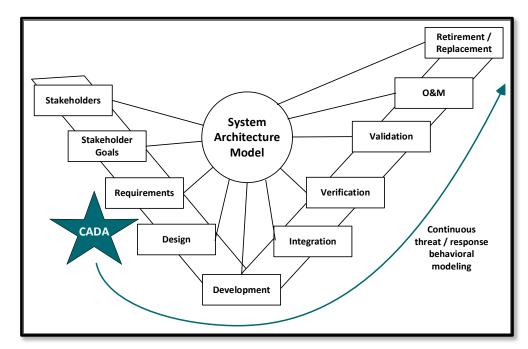
Current defenses are orders of magnitude behind:

- 10's days vuln-to-exploit, 100+ days to patch, 200+ days to detect
- 10's active vulnerability instances / device, 100-1000 latent vulnerabilities
- 100x the cost to fix in implementation vs design

4/2018 100k CVEs, ~600 CWEs 4/2023 214k CVEs, 933 CWEs

Across 1,063,482 platforms

100s to 1000s: 1 of CVEs-to-CWEs

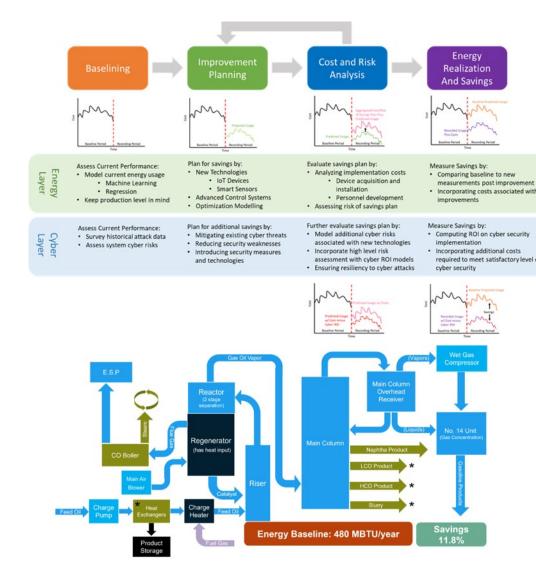

CVA Project Update: Define Fundamental Cyber Weaknesses

Results to Date: Cyber Weakness Enumeration (CWE) is a method for grouping classes of cyber vulnerabilities (CVEs) according to common threats and features.

- Established a **Special Interest Group** with MITRE to develop new CWEs specific to ICS/OT environments (initial 20).
- Developed CyManII Attack Defense Annex (CADA) to proactively investigate and systematically eliminate/mitigate weaknesses

Future Work: Structure CWEs to support **formal methods approaches for automated "discovery"** and mitigation earlier in the design-implement-operate lifecycle.

- Creates more coordinated approach Vulnerability Awareness (CVA).
- Applicable long term to both new ICS/OT CWEs and past IT CWEs.


CEEQ Project Update: Securing Energy Savings

Impacts to Date: Developing Cybersecurity Energy & Emissions Quantification (CEEQ) approach with industry input and testing on physical systems.

- One use case modeled fluid catalytic cracking in an oil refinery against <u>both</u> energy and security parameters to achieve 12% energy savings with secured digitization.
- Energy flow was modeled throughout the process, optimal head exchanger temperature was calculated, developed method to detect ransomware impacts.

Future Work:

- Expand SDA's CPP & CEEQ methods/tools across variety of manufacturing sectors and processes.
- Create a secure **verifiable ecosystem** for energy efficient and **decarbonized supply chains**.

Workforce Development Why 1 million workers?

We must aggressively

reach the growing workforce

with training that scales.

7.6%

Of the US manufacturing workforce

TrustWorks Update: Cybersecurity Training Manufacturers

Results to Date: Cybersecurity workforce training specific to manufacturing ICS/OT environment is in short supply.

- Efforts focused on developing novel cybersecurity training geared specifically toward **manufacturers**.
- Includes new asynchronous online content, in-person, virtual reality, and cyber range experiences.
- Piloted 1st of several **Regional Hubs (C4M)** with state of Texas funds for workforce / economic development.
- Developed a nation-wide network and a "CyManII Sealed" program to partner and scale for impact.

Future Work: Scaling in quantity of courses, regional hubs, and proactive impacts as SDA is advanced.

- Meet SMMs where they (& technology) are at now.
- Prepare for future Secure Defensible Architectures.
- University of Texas System-wide curriculum.

CYN/NII

the cybersecurity manufacturing innovation institute

