

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

AMMTO & IEDO JOINT PEER REVIEW

May 16th-18th, 2023

Washington, D.C.

Machine Learning (ML) Enhanced Development of Functionally Graded Materials (FGMs) Enabled By Directed Energy Deposition (DED) | AMMTO

Alex Kitt, EWI DE-EE009118 09/01/2020 - 07/31/2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

- Primary Innovation:
 - Development of Inconel 718 to René 41 Functionally Graded Material for Hot and Harsh Gash Path (HGP)
- AMMTO Mission Alignment:

 Energy, Emissions, & Environment: Reduced Buy:Fly- Lower Embodied Energy Expanded Design Space: Potential for Higher Efficiency Designs 	 <u>Cost & Competitiveness:</u> Current Manufacturing in China Reduced Lead Time Capabilities not Available In China
 Technical & Scientific: ICME + ML to Accelerate Development AM of "Unweldable" Alloys 	 Other Impacts: Five peer reviewed publications Full-Scale, FGM Jet Engine Component Build

- Support:
 - Neutron Scattering Measurements at ORNL, X-ray Scattering Measurements at Sandia National Lab, Computations to be Performed on NREL High Performance Computing

Project Outline

Innovation: ML Enabled Development of Hot and Harsh Gas Path FGMs **Project Lead:** EWI **Project Partners:** GE Research, University of South Carolina

Timeline: 09/01/2020 – 07/31/2023, 80% complete

Budget: BP1 – DOE Funded: \$2,578,782 Cost Share: \$813,632

BP2 – DOE Funded: \$1,361,459 Cost Share: \$367,433

	FY21 Costs	FY22 Costs	FY23 Costs	Total Planned Funding
DOE Funded	\$1,368,389	\$1,160,538	\$1,411,313	\$3,940,240
Project Cost Share	\$523,696	\$328,182	\$329,187	\$1,181,065

End Project Goal:

- 1. DED technologies to manufacture high γ' -low/no γ' strengthened Ni alloy FGMs with proper selection of the high γ' -low/no γ' strengthened Ni superalloys
- 2. FGM coupons shows comparable strength and oxidation resistance and at least 20-30% LCF improvement compared to welded coupons
- 3. Demonstration case shows at least 10-20% cost reduction compared to the current manufacturing methods; and
- 4. ML methods to optimize DED printing parameters and predict microstructure and defects of high γ' -low/no γ 'strengthened Ni alloy gradients.

Current State of Manufacturing

- HGP Component Life Limited by High Temperature Performance
- Current State Design Constraints:
 - High γ ' Ni-Based Superalloys (René 41, René 80, etc.)
 - Meet Durability Requirements
 - Penalized by Cost and Manufacturability
 - Often only required in a region of a part
 - Low/No γ ' Ni-Based Superalloys (Inconel 625, Inconel 718)
 - Do not Meet Durability Requirements
 - Lower Cost, Simpler Manufacturing
- Welding Low/No γ ' to High γ ' is Generally Avoided
 - High γ ' Alloys are Often Challenging to Weld
 - Welded Interface is a Stress Concentrator, has CTE Mismatch

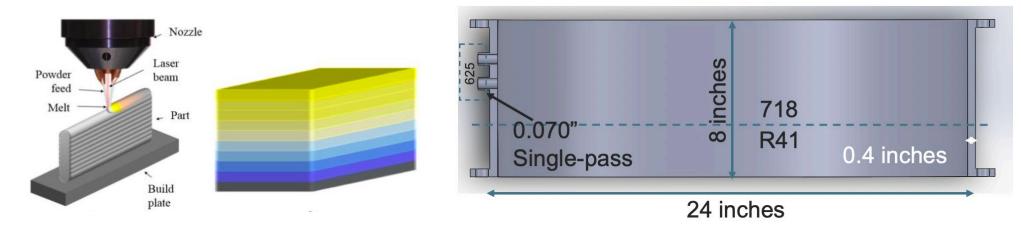
Project Goals

Program Team

- FGM DED technology development
- Coupon & demonstration case printing & testing

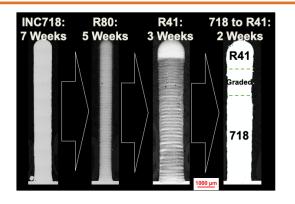
GE Research

- FGM gradient design
- Characterization
- Multi-material DED process modeling
- Machine learning

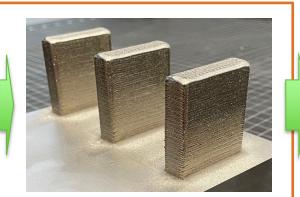


 Microstructure & defects modeling Field of Research:

- Maturation of Materials and DED Technology for HGP FGM Parts in Gas Turbines or Jet Engines (TRL 3 to TRL5)
 - FGM Allows "Best of Both Worlds"-Durability and Cost Effectiveness
 - DED Simplifies Powder Mixing and Process Monitoring


Target Metrics:

- BP1: >99.9% Dense, Crack Free, Coupon Scale FGM (Complete)
- BP2: Reduce Material and Manufacturing Costs by 10-20%
- BP2: Improve Durability by 20-30%


Project Strategy

BP1

Achieved:

- Rapid Development
- Crack Formation Models

Achieved:

- >99.9% Dense
- Crack Free
- HT Optimized

Progressive Development:

- 1. Innovation 1 and 2: Rapid Iteration of Single-Pass Walls for Initial Development
- 2. Representative Coupons for BP1 Validation
- 3. Relevant Environment Mechanical Testing
- 4. Achievement: Demonstration Component

Key Tools:

Oxidation


TBD:

- Advance DED Process for FGMs: Powder Mixing, Process Monitoring, Heated Build Plate
- Range of ICME Tools: Thermodynamic, DED Models, Cellular Automata
- ML/AI: GE BHM, GE IDACE

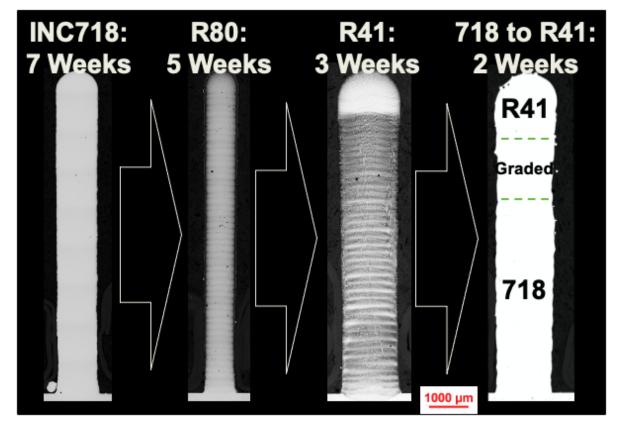
• Elevated Temp Tensile

• Elevated Temp Fatigue

BP2

TBD:

- Elevated Temp Tensile
- Density
- Cost Comparison


Innovation 1: Accelerated, Data Driven, Alloy Development

Transfer Learning Based Development:

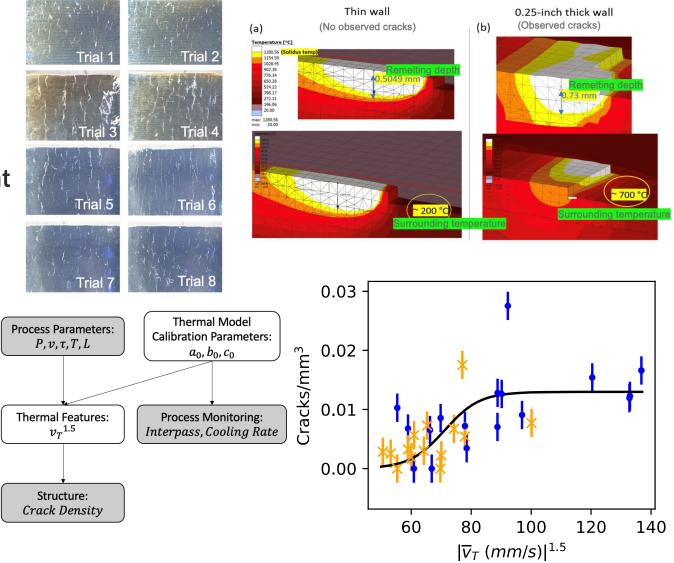
- Inconel 718 Developed "From Scratch" Using Traditional Design of Experiments
- High Fidelity Gaussian Process Trained
- Low Fidelity Discrepancy Function used to Quickly "Learn" new Alloys:
 - René 80
 - René 41
- FGM Process Window Parameters from Inconel 718 and René 41 Probabilistic Process Windows Overlap

Impact:

- Project: Achieved BP1 Go/No-Go: 99.9% Dense, Crack Free
- AMMTO: Rapid Alloy Development Combining Digital, Materials, and Process Expertise

Innovation 2: Physics Driven Crack Formation Prediction

Limitations to Data Driven ML:


 Crack-prone René 80, Failed when Extrapolating to Thick Walls

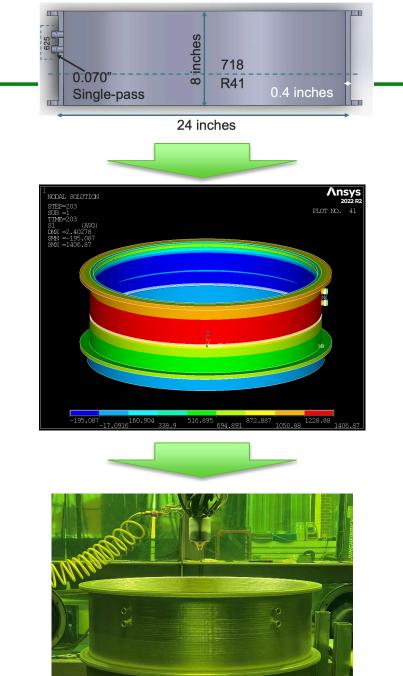
Hybrid Physics/ML Approach:

- Process to Thermal: Computationally Efficient Multi-Source Rosenthal Model Calibrated Against Process Monitoring
- Thermal to Crack Formation: Simplified Physics Based Criteria
- Calibration and Crack Formation Prediction
 using ML

Impact:

 Project: Achieved Defect Prediction >90% Milestone

Kitt, A, et al. Dol 10.2139


Achievement: Commercially Scaled Demonstration

Demonstration:

- Design Based on a Full Scale 737 Jet Engine Case
- FGM on Main Cylinder and Side Ports
- Design Modifications Based on Process Model for First Time Buildability
- Roughly 11 Days of Build Time

Impact:

- *Project:* Required for Sample Excision for Density and Elevated Temperature Tensile Testing
- AMMTO: Significant Step Towards Commercialization

Future Work, Technology Transfer, & Impact

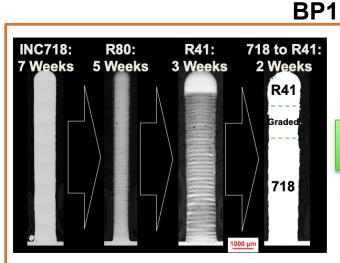
Future Work:

- Complete Coupon Level Mechanical Testing
- Operational Temperature Tensile, Fatigue, Oxidation Testing
- Complete Cost Comparison

Technology Transfer:

- Quarterly Updates to GE Aviation
- GER to Develop Technology Transition Plan
- Peer Reviewed Publications for Wider Adoption (5 submitted)

Impact:


- Developed and Demonstrated Two Methods of Accelerated Advanced Material Development:
 - Data Driven Transfer Learning
 - Hybrid (Physics/ML) Learning
- Demonstration Path to Industrial Application through Full Scale Demonstration Build

Questions?

Machine Learning Enhanced Development of Functionally Graded Materials Enabled By Directed Energy Deposition | AMMTO

Alex Kitt, EWI

akitt@ewi.org

Achieved:

- Rapid Development
- Crack Formation Models

- Achieved: • >99.9% Dense
- Crack Free
- HT Optimized

TBD:

- Elevated Temp Tensile
- Elevated Temp Fatigue
- Oxidation

TBD:

BP2

- Elevated Temp Tensile
- Density
- Cost Comparison