

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY **AMMTO & IEDO JOINT PEER REVIEW**

May 16th-18th, 2023

Washington, D.C.

Roll-to-Roll Manufacturing of Low Cost and Safer Lithium Ion Batteries | AMMTO

PI & Presenter: Ramin Amin-Sanayei; Arkema Inc., <u>Ramin.Amin-Sanayei@Arkema.com</u> Contract # DE-EE0009106 | 10/2020 to 12/2024

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- To develop sustainable, low-cost electrodes by eliminating NMP in production without compromising performance:
 - Synthesizing novel <u>water-based (WB) PVDF</u> binder for cathode; and novel <u>WB-acrylics</u> for anode
 - Developing <u>stable aqueous slurry</u> for <u>high energy densities</u> NMC-622 cathode and graphite anode
- > Impact: Reduces manufacturing cost; improves safety of manufacturing lines; and sustainable
- To develop water-based composite in-situ separator (CIS) to replace/eliminate free-standing polyolefin separator in cell assembly.
 - Developing <u>novel formulation & processing</u> using only alumina and binder
- Impact: Improves battery safety at elevated temp.; increases energy and power densities due to reduced thickness; decreases scrap rate (two instead of three-layer assembly)

Energy, Emissions, & Environment:	Cost & Competitiveness:
Smaller carbon footprint, sustainable	Lower cell cost (>10%), higher safety
Technical & Scientific:	Other Impacts:

Innovation:	WB-PVDF, WB-acrylics, WB stable slurries for high energy cathode and anode,
	composite in-situ separator

Project Lead: Arkema Inc.

Project Partners: Cabot Corporation, Saft USA, ORNL

Timeline: Oct. 1, 2020 to Dec. 31, 2024; 61% progress

 Budget: Cost shares
 BP1 (Oct. 2020 to Dec. 2022): 24.99%; BP2 (Jan. 2023 to Dec 2023): 24.68%;

 BP3 (Jan. 2024 to Dec. 2024): 24.29%.
 Total cost share: 24.64%

	FY21 Costs	FY22 Costs	FY23 Costs	Total Planned Funding
DOE Funded	\$719,799	\$504,151	\$1,329,344	\$3,937,888
Project Cost Share	\$229,348	\$179,341	\$435,510	\$1,287,416

End Project Goal: Demonstrate at pilot scale that production cost will be reduced to \$92-\$97.5/kWh, volumetric energy density increased to > 635 kWh/L, WB process can produce high quality electrodes with >4.1 mAh/cm², and separator shrinkage reduced to 0% at 150 °C.

Background & Strategic Approach

High Energy WB Cathode

formulation

Arkema:

Cabot:

Saft:

ORNL:

Roll-to-Roll Manufacturing of Low Cost and Safer Lithium-Ion Batteries

Sustainable and low carbon emission electrode and separator fabrication

High Energy WB Anode

Needs: water-processable conductive carbon, graphite, WB-binder and formulation

----Synthesize **WB-PVDF binder**, develop **WB-formulations** for electrodes

- Materials, *formulation, and process* development for CIS
- Screening/developing carbon & alumina suitable for WB formulation
- Developing **coated NMC** to protect against water attack
 - **Cell fabrication** & verification BP2
- **Pilot scale R2R production**, cell fabrication and validation BP3
- Material analysis
- Validating formulations and processes

Results and Achievements in BP1

•	Task or Subtask Title	Milestone Description	Current Progress to Milestone		
1.0	Material Developments				
1.1	Carbon and alumina surface modification	Dispersions of carbon & alumina in water without any settling after 2 hrs	Stable dispersion overnight \checkmark		
1.2	WB-PVDF synthesis 🛠 🛠	WB-PVDF latex with solids > 25%, shear stability > 20 min	Solids >26%, Stability > 30 min 🗸		
1.3	Water-resistant NMC622 development 🛠 🛠	Water-resistant NMC that retains >80% specific energy after 2 hrs	Retains >90% specific energy 🖌 🛠 🛠		
2.0	WB slurry formulation development and electrode fabrication				
2.1a	WB anode formulation development	WB slurry with solids >35%, easy to cast	Solids > 45%, stable, easy to cast \checkmark		
2.1b	WB cathode formulation development	WB slurry with solids >40%, easy to cast	Solids ~36%, stable, easy to cast 🗸		
2.2	Composite in-situ separator (CIS) 🛛 🛠 🛠	CIS with > 35% porosity, shrinking < 10%	Porosity >40%, shrinks <5% 🗸		
2.3	Integrating separator electrode fabrication + CIS in one step $\frac{1}{\sqrt{2}}$	Fabricating anode/cathode having CIS on it	CIS fabricated, stand alone, on anode and on cathode $\checkmark {\checkmark} {\swarrow} {\land}$		
3.0	Coin cell assembly and testing				
3.1	Cell assembly using the state-of-the-art electrode made with NMP process	Working cells made with electrodes using a typical NMP process/fabrication	800 cycles @C/2 & >80% capacity ✔		
3.2	Cell assembly using electrode of task 2.0	Working cells made with WB-electrodes	WB-anode & WB-cathode tested 🗸		
	Go/No-Go Decision Point	Fabricate coin cells using WB anode, Wb cathode and WB-CIS structures	Demonstrate rate capability (0.5C/0.2C) > 0.8, fade rate < 10% 🗸		

Novel WB-PVDF

WB-NMC cathode

- → The most challenging aspect of WB-PVDF binder is to coalesce particles and form an interconnected network
- → Binder should be able to make a continuous film (i.e. transparent and crack-free) upon drying
- → Developed formulation/processing for continuous solid film out of WB-PVDF having zero VOC (Innovative)

- → Stable and manageable pH is the most challenging aspect of NMC slurry; i.e NMC in water has pH ~12
- → ORNL showed water does not alter the main structure, just washes off residual impurities at the surface.
- → Developed high quality electrode formulation having zero VOC; (balanced formulation and suitable processing)

WB-NMC 622 cathode performance

WB-LFP cathode (extension)

<u>High-energy-density WB-LFP cathode</u> (93% AM) cycles well at C/2, operating at specific capacity of 140 mAh/g (no noticeable losses) after C-rate testing

Composite In-situ Separator (CIS) Development & Testing

- Developed adhesive & highly resistive separator
- Composite in-situ separator cast on copper

Cell without free-standing separator operational; and offers:

- Lower component cost by about 10%
- Thermal stability, tunable porosity, superb wettability,
- Improved cycle life! other advantages??

Future Work, Technology Transfer, & Impact

Future Work:

- Formulation optimization for WB-NMC-622 to achieve high loading (> 20 mg/cm²)
- Formulation optimization of CIS to achieve thinner separator (< 15 μm) & pinhole-free
- Test CIS in pouch cell and map advantages

Technology Transfer:

- Scale up production of WB-acrylics & validate performance at industrial partner
 - Upon positive results accelerate market introduction of WB-acrylic binder to NA (Arkema)
- Produce novel WB-PVDF binder at pilot scale
 - Validate performance at industrial partner for continuous R-2-R production of WB-cathode and CIS
 - Upon positive results accelerate market introduction of WB-PVDF binder to NA (Arkema)
- Secure partners for commercialization of WB-cathode and CIS (technology leap)

Impact:

 Process improvement → Lower cost, sustainability, smaller carbon footprint, safer production line, higher energy and power densities, and safer cells operation → advancing the AMMTO/IEDO mission towards electrification of transportation

- Roll-to-Roll Manufacturing of Low Cost and Safer Lithium Ion
 Batteries | AMMTO
- PI & Presenter: Ramin Amin-Sanayei; Arkema Inc., <u>Ramin.Amin-Sanayei@Arkema.com</u>; 2610-716-5761

