

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

AMMTO & IEDO JOINT PEER REVIEW

May 16th-18th, 2023

Washington, D.C.

High Throughput Solvent-Free Manufacturing of Battery Electrodes | AMMTO

Bryan Steinhoff, Navitas Systems

DE-EE009109 June 30, 2020 – December 31, 2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- Address some of the current gaps in solvent-free electrode processing
 - Extend the dry electrode fabrication process to lithium-ion battery anode manufacturing
 - State-of-the-art binder systems are not compatible with current cell designs
 - Solvent-free anodes suffer from poor mechanical strength and stability
 - Intensify the process through improved mixing, powder rheology and surface modifications
 - Remove previously used processing additives for improved mechanical and electrochemical performance
 - Enable processing of next-generation electrode materials that are not stable to solvent or ambient air exposure
 - If successful, solvent-free technology can be transferred to small and large-scale lithium-ion manufacturing
- Final deliverable of a 250 Wh/kg cell with 1000 cycles, in an EV format
- A special thanks to all our program partners Cabot Corporation, Arkema, the University of Tennessee at Knoxville (UTK), and Oak Ridge National Laboratory

Innovation: High-throughput dry-process electrode manufacturing **Project Lead:** Navitas Systems, LLC.

Project Partners: Cabot, Arkema, University of Tennessee at Knoxville, Oak Ridge National Lab

Timeline: June 30, 2020 – December 31, 2023, 80% progress

Budget: Total Project Funding: \$5.5M, DOE Share: 80%, Contractor Share: 20%

	FY21 Costs	FY22 Costs	FY23 Costs	Total Planned Funding
DOE Funded	\$1.6M	\$0.93M	\$1.87M	\$4.4M
Project Cost Share	\$0.38M	\$0.23M	\$0.49M	\$1.1M

End Project Goal: demonstrate an EV format cell with a specific energy density of 250 Wh/kg and 1000 cycle capability

Background & Strategic Approach (1)

 Material development to address anode formulation and electrochemical challenges PTFE reacts at Li⁺ at low potential (~0.7V)¹
 Develop a new hybrid binder formulation to

 $(C_2F_4)_n$ +4nLi⁺ + 4ne⁻ \rightarrow 2nC + 4nLiF

Voltage profiles of ADEP anodes containing PTFE

Need to reduce the amount of PTFE in anodes as much as possible for improved full cell capacity Develop a new hybrid binder formulation to reduce PTFE while maintaining film strength

(Top) newly formulated hybrid binder anode and (bottom) SEM of fibrillization in hybrid binder anodes

¹J. Power Sources 67, 1997, 344-347

Background & Strategic Approach (2)

- Develop innovative processing materials for solvent-free electrode processing
 - Development of multifunctional carbon to eliminate prior processing additives (i.e. activated carbon)

Multifunctional carbon development approach

Background & Strategic Approach (3)

- Utilize innovative and commercialized machinery for high-throughput processing
 - Adaptation of twin-screw extrusion to develop laboratory/small-pilot-scale production of dry-process

Twin Screw Extruder Diagram – Illustration Only

- Power requirement: 0.05-0.50 kWh/kg
 → @\$0.15/kWh means <\$0.01-\$0.08/kg
- Throughput: 0.5-10 kg/h
- Screw Speed: 200-1000 RPM

TSE screws have 3 different types of elements

- Conveying: move material forward
- *Kneading*: mixing elements that produce PTFE fibrils
- *Cutting*: breaks up larger flakes into smaller ones

Improvement in ultimate tensile strength of NMC622 cathodes using twin-screw extrusion at various processing temperatures

Results and Achievements (1)

• R2R Demonstration of Free-Standing Electrodes from Twin-Screw Extrusion Powders

Free-standing electrode fabrication

20m R2R free-standing cathode

- Able to demonstrate R2R production of both free-standing electrodes
 - Elevated calendaring temperature (120°C) and roll speed of ~1 m/min
 - Initial NMC622 cathode R2R demonstration was ~150 mg/cm²; now down to ~30-40 mg/cm² (5-6.5 mAh/cm²)
 - Moderately thick free-standing graphite anode produced (~20 mg/cm², 6.5-7 mAh/cm²)

~2m free-standing anode

Results and Achievements (2)

- Hybrid Binder Dry-Process Anode with Multifunctional Carbons
 - Arkema hybrid binder was combined with Cabot's multifunctional carbons in dry-process manufacturing

Graphite flakes containing multifunctional carbon and hybrid binder

~230µm initial free-standing anode

Anode with multifunctional carbon and hybrid binder Sampled Young's Modulus: 337 MPa Sampled UTS: ~0.6 MPa

Results and Achievements (3)

- Double Layer Pouch Cells Using Only Dry-Process Electrodes
 - Decreasing PTFE content is instrumental for high-capacity performance in double-layer/multi-layer pouch cells

Anode PTFE Content (%)	Cathode (NMC811) Active Material (%)	Initial Cycling Capacity (mAh/g)	# of Cycles at 80% Capacity
5	92	89.0	500
5	92	130.3	<mark>691</mark> *
2.5	92	137.2	1000
2.5	94	144.1	1000
1	92	171.7	854*

*Cycle testing still on-going
Black indicates baseline 2032 full-cell
Blue indicates cells trending above 500 cycles
Green indicates cells meeting 1000 cycle goal

Capacity retention data of full dry-process DLPs with various PTFE contents when cycled at C/3

Cells with 1% PTFE scale-up to ~230-250 Wh/kg, meeting program goals!

Future Work, Technology Transfer, & Impact

Future Work:

- Build multi-layer pouch cells for deliverable scale testing
- Integrate other materials (i.e. Si and S) for process compatibility

Technology Transfer:

- Navitas is looking to further scale-up the dry-processing technology outlined both for internal products as well as with external partners to MWh capacities
- Cabot and Arkema are looking to further validate and commercialize materials developed during this program for wholesale

Impact:

 Will aid in the commonization in the anode and cathode processing equipment, supply chain and operator training for lithium-ion battery OEM's concerning solvent-free manufacturing

High Throughput Solvent-Free Manufacturing of Battery Electrodes | AMMTO

Bryan Steinhoff, Navitas Systems

E-mail: bsteinhoff@navitassys.com

