Energy Storage & Conversion Manufacturing

Changwon Suh
Brian Valentine
Tina Kaarsberg
Paul Syers
Chad Sapp
Why focus on energy storage and conversion?

• Important building blocks for economy-wide decarbonization.
• There are manufacturing challenges that cut across multiple battery and other technologies
 o Addressing common manufacturing technical barriers can help to accelerate full-scale commercialization of recent innovations and emerging technologies.
 o Advances in manufacturing are potentially transferrable elsewhere in the manufacturing sector.

Current Status

• Rich, broad portfolio
• Sharpening strategy and roadmap on battery manufacturing
AMMTO’s Role within the DOE Energy Storage Landscape

Loan Program Office (LPO)
Supports debt financing for the commercial deployment of large-scale energy projects to support U.S. manufacturing.

Office of Manufacturing and Energy Supply Chains (MESC)
Supports scale-up and deployment of vertically-integrated manufacturing infrastructure (e.g., large-scale facilities, factories, etc.) needed to support clean and equitable energy transition.

Office of Clean Energy Demonstrations (OCED)
Supports large-scale clean energy demonstration projects in partnership with the private sector to launch or accelerate market adoption and deployment of technologies.

Advanced Materials and Manufacturing Technologies Office (AMMTO)
Supports innovative “applied R&D” and “manufacturing RD&D” focused on:
- Platform manufacturing technologies for processes and scale-up.

Basic Energy Sciences (BES)
Supports basic science research to understand, predict, and control the interactions of matter and energy at the electronic, atomic, and molecular levels.

Advanced Projects Research Agency-Energy (ARPA-E)
Supports “off-roadmap” transformational R&Ds ranging from basic science research to applied R&Ds that are high-risk, high-payoff transformational energy storage-related activities.

Vehicle Technologies Office (VTO)
Supports exploratory research to addresses fundamental issues of materials and electrochemical interactions associated with lithium and beyond-lithium batteries.

Office of Electricity (OE)
Supports applied materials R&Ds to identify safe, low-cost, and earth-abundant elements that enable cost-effective long-duration storage.
Supports early adoption by improving storage reliability and safety, applying modeling and analysis, and validating performance for rapid commercialization.

Office of Manufacturing and Energy Supply Chains (MESC)
Supports applied R&Ds to focus on optimizing next generation, high-energy lithium ion electrochemistries that incorporate new battery materials.
Historical FOA and Lab Call Topics

<table>
<thead>
<tr>
<th>Funding</th>
<th>FY</th>
<th>Description</th>
<th>AMMTO Investment</th>
</tr>
</thead>
</table>
| FOA | 2019 | Subtopic 1.1: Accelerate the Manufacturing Process Design and Development Cycle for Advanced Energy Conversion and Storage Materials
 | | Subtopic 1.2: Innovative Manufacturing Processes for Battery Energy Storage | $8M | |
| | 2021 | Flow Battery Systems Manufacturing FOA (with OE) | $17.9M |
| | 2021 | Subtopic 3.1: Structured Electrode Manufacturing for Li-ion Batteries | $7.5M |
| | 2022 | Subtopic 3.1: Advanced Process Manufacturing of Electric Vehicle Cathode Active Materials at Volume | $17.5M |
| Lab Call | 2020 | Battery Manufacturing Lab Call (with VTO) | $10M |
| | 2023 | Solid-state and Flow Battery Manufacturing Lab Call | $16M |
| SBIR | 2020 | Topic: Hi-T Nano—Thermochemical Energy Storage (with BTO) | $1.3M |
| | 2022 | Topic: Thermal Energy Storage for building control systems (with BTO) | $0.8M |
| | 2022 | Topic: High Operating Temperature Storage for Manufacturing | $0.4M |
| | 2023 | Topic: Chemistry-Level Electrode Quality Control for Battery Manufacturing | (Est. $0.4M) Proposals under review |
| Other | | Lab-Embedded Entrepreneurship Program (LEEP) - innovators working on battery technologies | $2.5M |
Energy Storage/Conversion Manufacturing Strategy

Portfolio objectives

Accelerate innovation to manufacture novel energy storage technologies in support of economy-wide decarbonization.

1. Identify new scalable manufacturing processes
2. Scale up manufacturing processes
3. Lower lifecycle cost to manufacture energy storage/conversion system

Who benefits from the manufacturing innovation?

We are building innovation ecosystem!

Domestic suppliers — AMMTO strengthens domestic material supply chains and improves manufacturing capabilities for energy storage technologies.

Domestic manufacturers — AMMTO helps manufacturers integrate energy storage technologies into their processes to improve resiliency and productivity.
Energy Storge/Conversion Manufacturing Strategy (continued)

What are we trying to do? What problem are we solving?

Energy Storage/Battery Manufacturing RD&D Portfolio is to reduce “time-to-market.”
FY20 AMMTO-VTO Joint Battery Manufacturing Lab Call

AMMTO’s strategic, jointly funded efforts between VTO since 2020. Focused on multiple aspects of EV Battery Manufacturing.

Goal

To establish public-private partnerships that address manufacturing challenges for advanced battery materials and devices, with a focus on de-risking, scaling, and accelerating adoption of new technologies

<table>
<thead>
<tr>
<th>Office</th>
<th>Project Title</th>
<th>National Labs</th>
<th>Industry Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMMTO</td>
<td>Advanced Brine Processing to Enable U.S. Lithium Independence</td>
<td>ANL</td>
<td>Albemarle/Ameridia (North Carolina)</td>
</tr>
<tr>
<td>($10M)</td>
<td>Scale-up Production of Graphene Monoxide for Next-Generation LIB Anodes</td>
<td>ANL</td>
<td>Connovate LLC (Wisconsin)</td>
</tr>
<tr>
<td></td>
<td>Continuous Flow Reactor Synthesis of Advanced Electrolyte Components for Lithium-Ion Batteries</td>
<td>ANL</td>
<td>Koura Global (MA)</td>
</tr>
<tr>
<td></td>
<td>Scaling up of High-Performance Single Crystalline Ni-rich Cathode Materials with Advanced Lithium Salts</td>
<td>PNNL</td>
<td>Albermarle (NC)</td>
</tr>
<tr>
<td></td>
<td>High-Energy and High-Power NMP-Free, Designer NMC 811 Cathodes with Ultra-Thick Architectures Processed by Electrophoretic Deposition</td>
<td>ORNL</td>
<td>PPG (PA)</td>
</tr>
<tr>
<td></td>
<td>High-Throughput Laser Processing and Acoustic Diagnostics for Enhanced Battery Performance and Manufacturing</td>
<td>NREL</td>
<td>Clarios and Amplitude (NY)</td>
</tr>
<tr>
<td></td>
<td>Commercially Viable Process for Surface Conditioning of High-Nickel Low-Cobalt Cathodes - BNL (Prime)</td>
<td>BNL</td>
<td>C4V & Primet (NY)</td>
</tr>
<tr>
<td></td>
<td>Multilayer Electrodes with Metalized Polymer Current Collector for High-Energy Lithium-Ion Batteries with Extreme-Fast-Charging Capability</td>
<td>ORNL</td>
<td>Soteria (SC)</td>
</tr>
<tr>
<td></td>
<td>Hydrothermal Production of Single Crystal Ni-rich Cathodes with Extreme Rate Capability</td>
<td>ANL</td>
<td>Hunt Energy Enterprise (Texas)</td>
</tr>
<tr>
<td></td>
<td>VTO Continuous High Yield Production of Defect-Free, Ultrathin Sulfide Glass Electrolytes for Next Generation Solid State Lithium Metal Batteries</td>
<td>ANL</td>
<td>PolyPlus (CA)</td>
</tr>
<tr>
<td>($5M)</td>
<td>Scaling Halide-type Solid Electrolytes for Solid State Batteries</td>
<td>ANL</td>
<td>Saint-Gobain Ceramics & Plastics (PA)</td>
</tr>
<tr>
<td></td>
<td>Scale-up of Novel Li-Conducting Halide Solid State Battery Electrolyte</td>
<td>LBNL</td>
<td>Saint-Gobain Research North America (PA)</td>
</tr>
<tr>
<td></td>
<td>Scaling-up and Roll-to-Roll Processing of Highly Conductive Sulfide Solid-State Electrolytes</td>
<td>PNNL</td>
<td>Ampcera Inc. (CA)</td>
</tr>
</tbody>
</table>

Managed by AMMTO

- ANL
- PNNL
- ORNL
- BNL
- NREL
- LBNL

Managed by VTO

- C4V & Primet
- Koura Global
- PPG/Saint-Gobain
- Saint-Gobain Ceramics & Plastics (PA)
- Saint-Gobain Research North America (PA)
- Ampcera Inc. (CA)

Projects and Statistics

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY
FY21 Flow Battery Systems Manufacturing FOA

This FOA aims to bring manufacturable systems from the lab to the marketplace – system prototype demonstration is key. Projects since 2022.

Motivation & Challenges

Motivation: Flow batteries are an ideal solution for grid supporting long duration energy storage.

Manufacturing challenges identified

• Inefficient and expensive manufacturing technologies

• Challenges with manufacturing scale-up of newer system designs & chemistries.

• Lack of robust, standardized supply chains (limited suppliers) and system integration challenges

Collaboration with OE

• AMMTO funds, supports, and manages the selected projects.

• OE will fund the costs of final prototype testing/validation conducted at the National Lab facilities.

Selected Projects (total $18M funding)

01 Largo Clean Energy: Innovative Manufacturing Processes to Enable Flow Batteries with Unmatched Capital Costs (Focus on stack and electrolyte)

02 TreadStone Technologies, Inc.: R2R Manufacturing of Metallic Electrodes and Bipolar Plates for Flow Batteries (focus on bipolar plates)

03 OTORO Energy Inc.: Metal Chelate Flow Battery System Manufacturing (focus on electrolytes)

FY 19 MT-FOA includes

- Subtopic 1.1: Accelerate the Manufacturing Process Design and Development Cycle for Advanced Energy Conversion and Storage Materials (7 projects, $10M)
- Subtopic 1.2: Innovative Manufacturing Processes for Battery Energy Storage (6 projects, $20M + $5M from VTO)

FY 21 MT-FOA includes “Energy Systems” subtopic.

- Innovative micromanufacturing processes for lithium-ion batteries to enhance safety and reduce cost and time-to-market. (6 projects, $7.5M)
Keep identifying key needs

Challenges and gaps (for example):

- **Need for advanced tooling** to manufacture the high-performance components at scale commensurate with large volume production;

- **Need for precision manufacturing technologies** for energy conversion storage materials; and

- **Need for processing technologies** to develop promising materials/components/systems in the volumes and throughput required for pilot scale

- **Need for micromanufacturing efforts** to harness new innovations

Focus on

- **Processing level** – innovating in manufacturing processes to improve productivity, quality, and eco-friendliness.

- **Machine level** – creating new manufacturing machinery and improving existing equipment to enhance accuracy and throughput in order to lower the cost of energy storage production.

- **Systems-level** – focusing on the systems used to enable the production process.

- **Clean energy ecosystem level** - promoting manufacturing competitiveness and workforce abilities.

Future state

1. **Harnessing collaboration** through manufacturing RD&D collaboratories.

2. **Accelerating scale-up of high-volume storage/conversion manufacturing** by:
 1) Building confidence in the use of manufacturing platform technologies;
 2) Developing technical standards to assess the scalability and manufacturability of storage/conversion technologies; and
 3) Promoting the use of platform manufacturing technologies by sharing knowledge through the innovation ecosystem.
CRADA Lab Call: Focus Area 1

Solid-State Battery Manufacturing RD&D

- Translating fundamental solid-state electrolyte R&D into large format/high-volume manufacturing RD&D.
- Enhancing precision processing and fabrication of solid-state batteries in large format cells.
- Verification and validation (V&V) of solid-state battery scalability.

$8M

CRADA Lab Call: Focus Area 2

Flow Battery Manufacturing RD&D

- Manufacturing for new (or enhanced) cell/reactor architecture and configuration.
- Developing manufacturing/process standards.

$8M

Li-ion Battery Remanufacturing RD&D

- Room temperature process development for recycling and reuse of electrodes
- Rejuvenation (re-manufacturing) of electrodes for direct reuse
- Recycling of the electrolyte
- Education and workforce development

$2M

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY
Advanced Materials and Manufacturing Technologies Office

Careers and Fellowships AMMTO News and Events Funding Opportunities

The Advanced Materials & Manufacturing Technologies Office (AMMTO) advances energy-related materials and manufacturing technologies to increase domestic competitiveness and build a clean, decarbonized economy.

SUBSCRIBE FOR UPDATES
Stay abreast of the latest developments in Advanced Materials and Manufacturing Technologies.

Enter Email Address GO

DOE Strategic Support for Battery Innovation, Manufacturing, and Use
Energy Storage Energy Tech Team (SETT) & related coordinating bodies

ESGC
Main coordinating structure for storage

Storage SETT (Prog. Mgr.- Level Technical Execution)

- Technology Development
- Manufacturing & Supply Chain Innovations, Workforce
- Investment, Commercialization, and Scale-Up
- Markets Valuation

Inclusion & Diversity incorporated throughout

- Batteries+
- Thermal+
- Power Electronics
- Storage for Manufacturing
- Manufacturing for Storage
- Supply Chain
- Workforce
- Financial Analysis
- Sector Tracking
- Investment Coordination
- Partnerships

Joint Strategy Team - Batteries establishes technology strategy
LDSS Coordinator ensures progress towards goals

[Align with Departmental TA Initiative]

Hydrogen - In ESGC Scope but coordinated by H2 SETT/JST