U.S. DEPARTMENT OF ENERGY

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Energy Storage & Conversion Manufacturing

Changwon Suh Brian Valentine Tina Kaarsberg Paul Syers Chad Sapp

AMMTO & IEDO JOINT PEER REVIEW

May 16th-18th, 2023 Washington, D.C.

Overview

01

Why focus on energy storage and conversion?

- Important building blocks for economy-wide decarbonization.
- There are <u>manufacturing challenges</u> that cut across multiple battery and other technologies
 - Addressing common manufacturing technical barriers can help to accelerate fullscale commercialization of recent innovations and emerging technologies.
 - Advances in manufacturing are potentially transferrable elsewhere in the manufacturing sector.

02

Current Status

- Rich, broad portfolio
- Sharpening strategy and roadmap on battery manufacturing

AMMTO's Role within the DOE Energy Storage Landscape

Loan Program Office (LPO)

Supports debt financing for the commercial deployment of largescale energy projects to support U.S. manufacturing.

Office of Manufacturing and Energy Supply Chains (MESC)

Supports scale-up and deployment of vertically-integrated manufacturing infrastructure (e.g., large-scale facilities, factories, etc.) needed to support clean and equitable energy transition.

Office of Clean Energy Demonstrations (OCED)

Supports large-scale clean energy demonstration projects in partnership with the private sector to launch or accelerate market adoption and deployment of technologies.

Advanced Materials and Manufacturing Technologies Office (AMMTO)

Supports innovative "applied R&D" and "manufacturing RD&D" focused on:

 Platform manufacturing technologies for processes and scale-up.

Securing Energy Infrastructure **Basic Science** Research Large-scale Demonstration **Exploratory** Research **Manufacturing Applied** R&D R&D

Office of Electricity (OE)

Supports applied materials R&Ds to identify safe, low-cost, and earth-abundant elements that enable cost-effective long-duration storage.

Supports early adoption by improving storage reliability and safety, applying modeling and analysis, and validating performance for rapid commercialization.

Basic Energy Sciences (BES)

Supports basic science research to understand, predict, and control the interactions of matter and energy at the electronic, atomic, and molecular levels

Advanced Projects Research Agency-Energy (ARPA-E)

Supports "off-roadmap" transformational R&Ds ranging from basic scince research to applied R&Ds that are high-risk, high-payoff transofrmational energy storage-related activities.

Vehicle Technologies Office (VTO)

Supports exploratory research to addresses fundamental issues of materials and electrochemical interactions associated with lithium and beyond-lithium batteries.

Supports applied R&Ds that focus on optimizing next generation, high-energy lithium ion electrochemistries that incorporate new battery materials.

Historical FOA and Lab Call Topics

Funding	FY	Description	AMMTO Investment
FOA	2019	Subtopic 1.1: Accelerate the Manufacturing Process Design and Development Cycle for Advanced Energy Conversion and Storage Materials Subtopic 1.2: Innovative Manufacturing Processes for Battery Energy Storage	\$8M
	2021	Flow Battery Systems Manufacturing FOA (with OE)	\$17.9M
	2021	Subtopic 3.1: Structured Electrode Manufacturing for Li-ion Batteries	\$7.5M
	2022	Subtopic 3.1: Advanced Process Manufacturing of Electric Vehicle Cathode Active Materials at Volume	\$17.5M
Lab Call	2020	Battery Manufacturing Lab Call (with VTO)	\$10M
	2023	Solid-state and Flow Battery Manufacturing Lab Call	\$16M
SBIR	2020	Topic: Hi-T Nano—Thermochemical Energy Storage (with BTO)	\$1.3M
	2022	Topic: Thermal Energy Storage for building control systems (with BTO)	\$0.8M
	2022	Topic: High Operating Temperature Storage for Manufacturing	\$0.4M
	2023	Topic: Chemistry-Level Electrode Quality Control for Battery Manufacturing	(Est. \$0.4M) Proposals under review
Other	Since 2015	Lab-Embedded Entrepreneurship Program (LEEP) - innovators working on battery technologies	\$2.5M

Energy Storge/Conversion Manufacturing Strategy

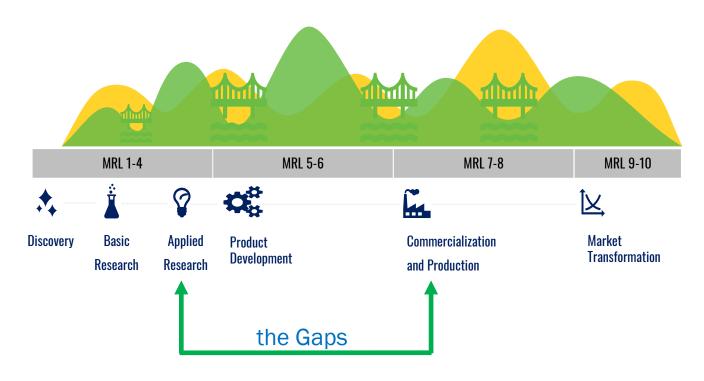
Portfolio objectives

Accelerate innovation to manufacture novel energy storage technologies in support of economy-wide decarbonization.

- 1. <u>Identify new scalable</u> manufacturing processes
- 2. <u>Scale up manufacturing</u> <u>processes</u>
- 3. <u>Lower lifecycle cost to</u> manufacture energy storage/conversion system

Who benefits from the manufacturing innovation?

We are building innovation ecosystem!


Domestic suppliers – AMMTO strengthens domestic material supply chains and improves manufacturing capabilities for energy storage technologies.

Domestic manufacturers –

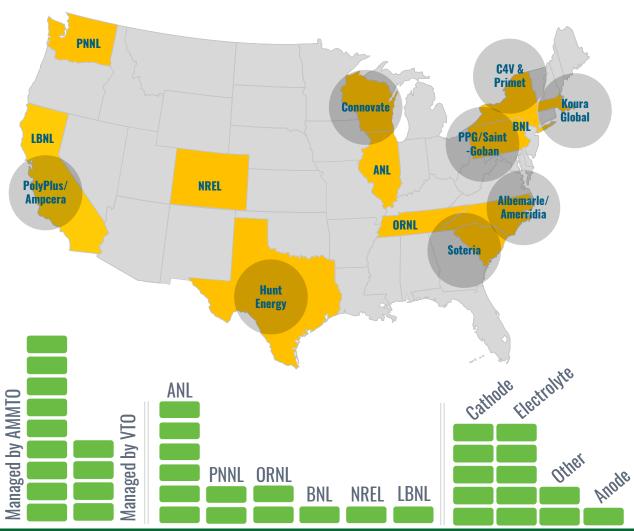
AMMTO helps manufacturers integrate energy storage technologies into their processes to improve resiliency and productivity.

Energy Storge/Conversion Manufacturing Strategy (continued)

What are we trying to do? What problem are we solving?

Energy Storage/Battery Manufacturing RD&D Portfolio is to reduce "time-to-market."

FY20 AMMTO-VTO Joint Battery Manufacturing Lab Call


AMMTO's strategic, jointly funded efforts between VTO since 2020. Focused on multiple aspects of EV Battery Manufacturing .

Goal

To establish public-private partnerships that address manufacturing challenges for advanced battery materials and devices, with a focus on de-risking, scaling, and accelerating adoption of new technologies

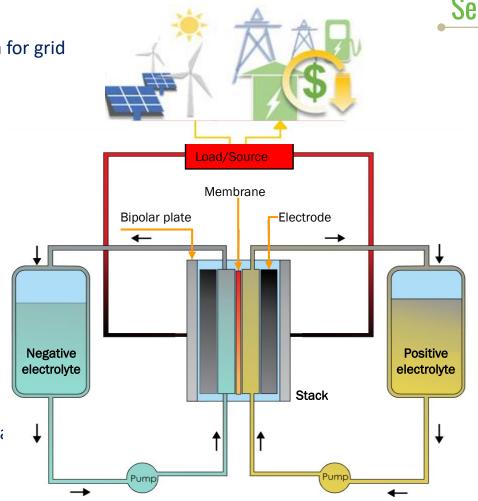
Office	Project Title	National Labs	Industry Partner
AMMTO (\$10M)	Advanced Brine Processing to Enable U.S. Lithium Independence	ANL	Albemarle/Amerridia (North Carolina)
	Scale-up Production of Graphene Monoxide for Next-Generation LIB Anodes	ANL	Connovate LLC (Wisconsin)
	Continuous Flow Reactor Synthesis of Advanced Electrolyte Components for Lithium-Ion Batteries	ANL	Koura Global (MA)
	Scaling up of High-Performance Single Crystalline Ni-rich Cathode Materials with Advanced Lithium Salts	PNNL	Albermarle (NC)
	High-Energy and High-Power NMP-Free, Designer NMC 811 Cathodes with Ultra-Thick Architectures Processed by Electrophoretic Deposition	ORNL	PPG (PA)
	High-Throughput Laser Processing and Acoustic Diagnostics for Enhanced Battery Performance and Manufacturing	NREL	Clarios and Amplitude (NY)
	Commercially Viable Process for Surface Conditioning of High-Nickel Low-Cobalt Cathodes - BNL (Prime)	BNL	C4V & Primet (NY)
	Multilayer Electrodes with Metalized Polymer Current Collector for High-Energy Lithium-Ion Batteries with Extreme-Fast-Charging Capability	ORNL	Soteria (SC)
	Hydrothermal Production of Single Crystal Ni-rich Cathodes with Extreme Rate Capability	ANL	Hunt Energy Enterprise (Texas)
VTO (\$5M)	Continuous High Yield Production of Defect-Free, Ultrathin Sulfide Glass Electrolytes for Next Generation Solid State Lithium Metal Batteries	ANL	PolyPlus (CA)
	Scaling Halide-type Sold Electrolytes for Solid State Batteries	ANL	Saint-Goban Ceramics & Plastics (PA)
	Scale-up of Novel Li-Conducting Halide Solid State Battery Electrolyte	LBNL	Saint-Gobain Research North America (PA)
	Scaling-up and Roll-to-Roll Processing of Highly Conductive Sulfide Solid-State Electrolytes	PNNL	Ampcera Inc. (CA)

Projects and Statistics

FY21 Flow Battery Systems Manufacturing FOA

This FOA aims to bring manufacturable systems from the lab to the marketplace – system prototype demonstration is key. Projects since 2022.

Motivation & Challenges


Motivation: Flow batteries are an ideal solution for grid supporting long duration energy storage.

Manufacturing challenges identified

- Inefficient and expensive manufacturing technologies
- Challenges with manufacturing scale-up of newer system designs & chemistries.
- Lack of robust, standardized supply chains (limited suppliers) and system integration challenges

Collaboration with OE

- <u>AMMTO</u> funds, supports, and manages the selected projects.
- <u>OE</u> will fund the costs of final prototype testing/validation conducted at the National La facilities.

Selected Projects (total \$18M funding)

- **Q11** Largo Clean Energy: Innovative Manufacturing Processes to Enable Flow Batteries with Unmatched Capital Costs (Focus on stack and electrolyte)
- Manufacturing of Metallic
 Electrodes and Bipolar Plates for
 Flow Batteries (focus on bipolar plates)
- **OTORO Energy Inc.:** Metal Chelate Flow Battery System Manufacturing (focus on electrolytes)
- **Quino Energy Inc.:** Continuous Flow Synthesis of Low-Cost, Long Lifetime Aqueous Organic Flow Battery Reactants (focus on electrolytes)

FY19 and FY21 Multi-Topic FOAs

01

FY 19 MT-FOA includes

- Subtopic 1.1: Accelerate the Manufacturing Process Design and Development Cycle for Advanced Energy Conversion and Storage Materials (7 projects, \$10M)
- Subtopic 1.2: Innovative Manufacturing Processes for Battery Energy Storage (6 projects, \$20M + \$5M from VTO)

02

FY 21 MT-FOA includes "Energy Systems" subtopic.

 Innovative micromanufacturing processes for lithium-ion batteries to enhance safety and reduce cost and time-to-market. (6 projects, \$7.5M)

PROJECT TITLE \$	PROJECT LEAD ‡	PROJECT PARTNERS	CITY/STATE \$
CoEx Electrode Structuring for High Energy and Fast Charging Lithium-lon Batteries	Palo Alto Research Center, Inc.	Oak Ridge National Laboratory	Palo Alto, CA
High Throughput Source-less Plasma Deposition of Structured Silicon Anodes for Lithium-lon Batteries	Amprius Technologies, Inc.	None	Fremont, CA
Dry Laser Powder-Bed Fusion for Structured Cathode Manufacturing	Lawrence Livermore National Laboratory	Ampcera	Livermore, CA
Acoustic Field-Assisted Additive Manufacturing for Structured Electrode Lithium-ion Batteries: Reliability Characterization and Scale-up	University of Washington	Oak Ridge National Laboratory, University of California, Santa Barbara	Seattle, WA
Scalable High-Throughput Open- Air Spray-Plasma Manufacturing of Solid-State Lithium Batteries	Stanford University	None	Redwood City, CA
Direct Ink Writing of 3D Architectures for Lithium-Ion Batteries	University of California: Los Angeles	Lawrence Livermore National Laboratory	Los Angeles, CA

Next Steps: Energy Storge/Conversion Manufacturing

Keep identifying key needs

Challenges and gaps (for example):

- Need for advanced tooling to manufacture the high-performance components at scale commensurate with large volume production;
- technologies for energy conversion storage materials; and
- Need for processing technologies to develop promising materials/components/systems in the volumes and throughput required for pilot scale
- efforts to harness new innovations

Focus on

- Processing level innovating in manufacturing processes to improve productivity, quality, and eco-friendliness.
- *Machine level* creating new manufacturing machinery and improving existing equipment to enhance accuracy and throughput in order to lower the cost of energy storage production.
- **Systems-level** focusing on the systems used to enable the production process.
- Clean energy ecosystem level promoting manufacturing competitiveness and workforce abilities.

Future state

- 1. Harnessing collaboration through manufacturing RD&D collaboratories.
- manufacturing by:
 - 1) Building confidence in the use of manufacturing platform technologies:
 - 2) Developing technical standards to assess the scalability and manufacturability of storage/conversion technologies; and
 - Promoting the use of platform manufacturing technologies by sharing knowledge through the innovation ecosystem.

FY23: Energy Storage & Conversion Manufacturing

CRADA Lab Call: Focus Area 1

Solid-State Battery Manufacturing RD&D

\$8M

- Translating fundamental solid-state electrolyte R&D into large format/highvolume manufacturing RD&D.
- Enhancing precision processing and fabrication of solid-state batteries in large format cells.
- Verification and validation (V&V) of solidstate battery scalability.

CRADA Lab Call: Focus Area 2

Flow Battery
Manufacturing
RD&D

\$8M

- Manufacturing for new (or enhanced) cell/reactor architecture and configuration.
- Developing manufacturing/process standards.

Li-ion battery rejuvenation/ reuse collaboration with ReCell Center

Li-ion Battery
Remanufacturing
RD&D

\$2M

- Room temperature process development for recycling and reuse of electrodes
- Rejuvenation (re-manufacturing) of electrodes for direct reuse
- Recycling of the electrolyte
- Education and workforce development

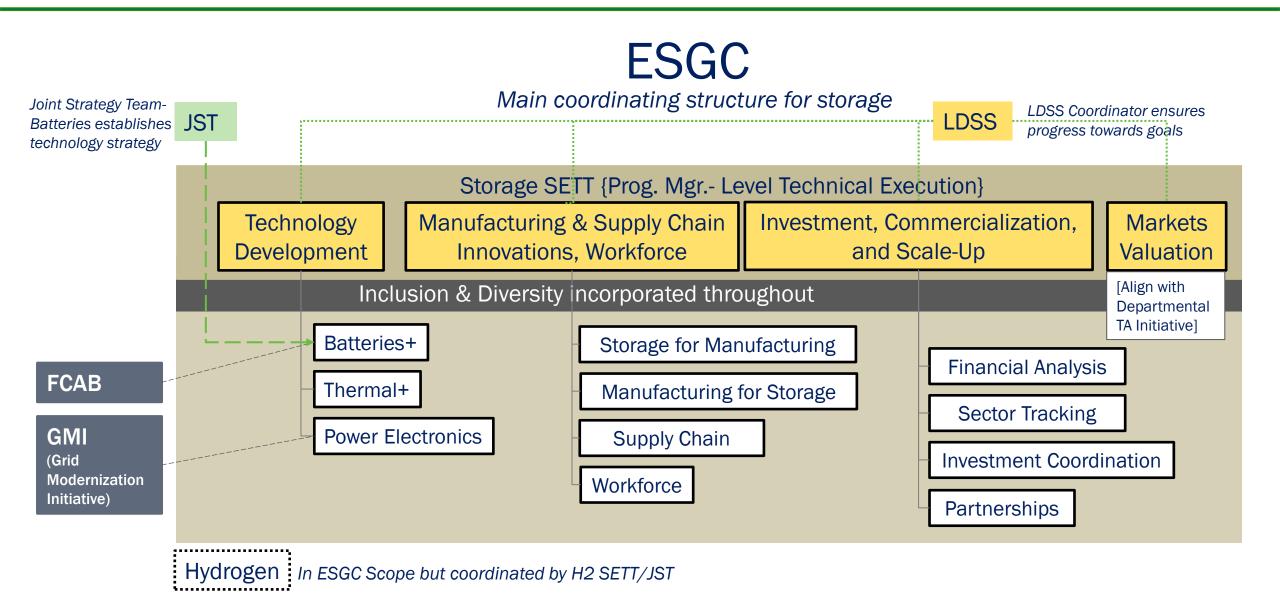
ENERGY

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Enjoy our accomplishments

The Advanced Materials & Manufacturing Technologies Office (AMMTO) advances energy-related materials and manufacturing technologies to increase domestic competitiveness and build a clean, decarbonized economy.

https://www.energy.gov/eere/ammto/advancedmaterials-manufacturing-technologies-office



Materialsand

DOE Strategic Support for Battery Innovation, Manufacturing, and Use

Energy Storage Energy Tech Team (SETT) & related coordinating bodies

