DOE Lignin to Carbon Fiber Workshop

Detroit, MI

Presented by:

Mark Downing Bioenergy Program Environmental Sciences Division

Oak Ridge National Laboratory

June 4, 2013

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERG

Substantive importance discussions

- What are the larger substantive issues?
- What are the questions we need to be asking?
- What is the State of Technology?
- What is currently researchable?
- What is deployable? At what scale? With what quality?

Substantive importance discussions

- What are our capabilities?
 - Carbon Fiber (materials) State of Technology
- What are our processing capabilities? At what scale?
 - Carbon Fiber Technology Facility (CFTF)
- What are our analytical capabilities?
 - Manufacturing Demonstration Facility (MDF)
- What about precursor sources?
 - Bioenergy Science Centers (BESC)
- What are our partnership possibilities?
 - Carbon Fiber Technology Consortium (CFTC)

ENERGY | Energy Efficiency & Renewable Energy

The Energy Independence and Security Act (EISA) of 2007 sets aggressive goals:

- Move renewable fuels into the marketplace
- Reduce the nation's dependence on foreign sources of energy
- Reduce GHG emissions from the transportation sector.

EISA established production volumes for the <u>Renewable Fuel Standard Program (RFS)</u>, increasing the supply of renewable fuels to 36 billion gallons by 2022.

The U.S. Department of Energy's (DOE) Biomass Program focuses on developing advanced biofuels to help meet the RFS goals.

eere.energy.gov

Overall picture: Biomass for fuels and bioproducts

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Biofuel and Lightweight Materials from Renewable Resources

Biomass feedstocks for energy

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Bioscience and biotechnology spans resource to end use

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

BioEnergy Science Center

A multi-institutional, DOE-funded center performing basic and applied science dedicated to improving yields of biofuels from cellulosic biomass

Mascoma Corporation

Samuel Roberts Noble Foundation National Renewable Energy Laboratory Cornell University University of California—Riverside North Carolina State University University of California—Los Angeles DuPont GreenWood Resources University of North Texas

Consolidated bioprocessing (CBP) will revolutionize how biomass is processed and converted

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Genetic block in lignin biosynthesis in switchgrass increases biofuel yields

Phenylalanine - PAL

CAK RIDGE NATIONAL LABORATORY

Genetic manipulation of lignin improves biofuel production from switchgrass

- Down-regulation of a single gene reduces recalcitrance with no apparent growth defects and leads to:
 - Increase in ethanol production by over one-third
 - Reduction in needed severity of pre-treatment
 - Evidence that biofuel processing costs can be reduced by at least 20% with 300-400% lower enzyme costs

Wild-type (L) and 3 transgenic switchgrass plants (R)

Fu et al. PNAS, 2011

Lignin: A renewable low-cost feedstock

- Characteristics
 - Can be derived from trees (20–30% lignin) and other biomass
 - Currently a by-product of pulping and biorefineries
 - Readily available non-petroleum-based CF precursor
 - Potentially lowest cost precursor

The case for lignin

- Abundant: 40M tpy can be extracted from Kraft mills with no adverse effect on mill balance (source: Peter Axegard, Innventia)
- Inexpensive: \$0.03-\$0.08/lb fuel value
- Procured sustainably
- Renewable and carbon rich
- Domestic
- Rural jobs
- Enhances biorefinery economics

Potential lignin-derived products

Product	Current technology status	Market risk	Challenges	Market volume				
Hydrocarbon and aromatic chemicals								
Benzene/toluene/xylene	Partially developed	Low	Catalytic challenges: Selective dehydroxylation, demethoxylation and dealkylation	High				
Phenol/substituted phenols	Partially developed	Low	-do- and Secondary derivatization of BTX chemicals	High				
Aromatic polyols	Emerging	?	-do-	?				
Biphenyls	Emerging	?	-do-	Moderate				
Cyclohexane	Emerging	Low	-do-	High				
Aromatic monomers	Emerging	?	Selective hydrogenolysis	?				
Oxidized products (vanillin/DMSO)	Developed	High	Biocatalytic route for selective oxidation	Low				
C1-C7 gases and mixed liquid fuels	Emerging	Low	Catalyst life, reduce process steps, process scale-up	High				
Macromolecules and their derivatives								
Carbon fiber	Partially developed	Moderate	Economic challenges: Isolation of lignin, spinning rate, carbon yield, varied lignin sources	High				
Polymer extender	Partially developed	Moderate	Modification of lignin to compatibilize with polymer matrices, color of lignin-extended product	Moderate				
Thermosets	Emerging	Moderate	Molecular weight and viscosity control of the product, varied lignin sources	?				
Formaldehyde free adhesives	Partially developed	Moderate	Consistency of lignin to ensure constant cure rate	High				
Syngas products								
Methanol/dimethyl ether	Developed	Low	Technological challenges: Economic syngas purification, process scale-up	High				
Ethanol/mixed alcohols	Emerging	Moderate	Economic syngas purification, catalyst and process improvement to produce 2-C alcohols, process scale-up	High				

Source: Holladay et al., Top Value-Added Chemicals from Biomass, PNNL-16983, October 2007

Current carbon fiber technology: From lab discovery to commercialization

DOE Office of Science

- Precursor chemistry and microstructure
- Process science: Microwaves create internal heating through material dipole vibrations

Fiber processing

DOE EERE

- Melt spinning increases throughput with less energy and solvent
- Microwave/plasma-based conversion processes reduce residence time and energy demand

Industry partnerships

- CFTF: 25 ton/year pilot line facility
- Large IP portfolio available for licensing
- Developing key partnerships in multiple industries

Carbon fiber product forms

Source: Chris Red, "2012 Global Market for Carbon Fiber Composites," Carbon Fibers 2012

Carbon fiber research priorities: Alternative precursors

Petroleum-based polyacrylonitrile (PAN)

- Most common precursor
- Cost fluctuates with crude oil prices

Textile PAN and polyolefinbased precursors

- Lower cost
- Petroleum-based

Lignin: A sustainable resource material

- Commonly derived from wood via Kraft pulping
- By-product of cellulosic ethanol production: Supply will increase as biorefineries are built
- Cost is largely independent of oil prices

Today, almost half of carbon fiber manufacturing costs are associated with precursors

Keys to maximizing lignin carbon fiber value

- Tendencies:
 - Hardwood lignin melt spins well and stabilizes slowly
 - Softwood lignin stabilizes well but doesn't readily melt spin
 - High purity is needed for melt spinning

Carbon fiber market

Automotive, wind energy, pressure vessels, oil and gas, and all other high-volume energy applications of carbon fiber composites are in the "industrial" market sector

Cumulative carbon fiber demand by market sector

Source: Chris Red, "2012 Global Market for Carbon Fiber Composites," Carbon Fibers 2012

Costs and properties of structural carbon fibers

Other potential markets for low-cost carbon fiber

Civil infrastructure	Rapid repair and installation, time and cost sa	vings
Biomass materials	Alternative revenue, waste minimization	Common issues
Nontraditional energy	Geothermal, solar, and ocean	Fiber cost
Non-aerospace defense	Light weight, higher mobility	Fiber availability
Aerospace	Secondary structures	Design methods
Power transmission	Less bulky structures, zero CLTE	Manufacturing methods
Oil and gas	Offshore structural components	Product forms
Vehicle technologies	Necessary for >50% mass reduction	հ մե
Wind energy	Needed for longer blade designs	
Energy storage	Flywheels, Li-ion batteries, supercapacitors	
Electronics	Light weight, EMI shielding	
Pressurized gas storage	High specific strength	

Potential automotive market is huge for low-cost carbon fiber

Carbon fiber potential in 2017 at 50% of current price

10B lb potential automotive demand at full market penetration

Source: Lucintel, ACMA Composites 2012

State of structural lignin carbon fiber technology

- Mechanical properties:
 - Best strength and modulus to date ~ 155 ksi / 12 Msi (with softwood)
 - Typical strength and modulus ~ 70 ksi / 7 Msi
- Multi-filament tows not despoolable
- Single filaments that are moderately stretchable have been produced
- Lignin carbon fiber filaments exhibit evolving graphitic that is isotropic
 - Aligned crystallite morphology has not been reported
- Earliest development work dates to 1960s; DOE funding initiated in late 1990s

Multi-filament lignin tows

Filament crystallite orientation

Lignin-based carbon fiber (LCF) meets performance requirements for high-temperature thermal insulation

18 in. diameter lignin GRI[™] prototypes

Figures courtesy GrafTech

Various GRI[™] products machined into shapes

Other potential functional applications: Batteries, capacitors, sorbents (filtration, natural gas storage), fireproof fabrics

Keys to structural properties: Possible solutions to the problem

Feedstock selectivity

- Identify preferred lignin characteristics (currently not well understood)
- Select and/or genetically engineer plants that produce lignin with preferred characteristics
- Mill selectivity
- Selective isolation/extraction/purification processes
- Molecular weight control (fractionation)

Chemistry is the "master key" to structural properties

What is a composite?

- Combination of 2 or more constituent materials, each retaining its distinct phase, working together to deliver properties that cannot be achieved by either alone
- Common examples:
 - Paper (cellulose fibers in a binder)
 - Concrete (steel rods reinforcing cement matrix)
 - Particle board (wood chips reinforcing polymeric matrix)
 - Trees (cellulosic reinforcement in lignin matrix)

Chopped fiber, random composite (courtesy Rutgers University)

Woven carbon fabric

Continuous fiber composite with unidirectional lamina

Manufacturing Matters

U.S. Manufacturing Sector

- Contributes about 12% of gross domestic product (GDP)
- Directly employs ~12 million people
- Accounts for 60% of U.S. engineering and science jobs
- Supplies about 57% of U.S. exports
- Produces nearly 20% of the world's manufacturing output

Manufacturing is the most diverse end-use sector— in terms of energy services required, sources of energy used, technologies needed, and product output.

We are focusing ORNL resources to support manufacturing initiative

- Manufacturing and materials R&D to:
 - Reduce the energy intensity of U.S. industry
 - Support development of new products
 - Strengthen our nation's competitiveness and economic vitality
- Leveraging ORNL's distinctive core capabilities
 - Neutron scattering
 - High-performance computing
 - Advanced materials
 - Advanced characterization

MDF: a multidisciplinary DOEfunded facility dedicated to enabling demonstration of next-generation materials and manufacturing technologies for advancing the US industrial economy

www.ornl.gov/manufacturing

ORNL has exceptional resources for materials and manufacturing R&D

National user facilities

- Building Technologies Research and Integration Center
- Center for Nanophase Materials Sciences
- High Flux Isotope Reactor
- High Temperature
 Materials Laboratory
- National Center for Computational Sciences
- National Transportation Research Center
- Spallation Neutron Source

End-to-end research at a single site to reduce costs, accelerate innovation, and maximize capital investment culminating in prototypes

Specialized capabilities

Carbon Fiber Technology Center
 Multiprogram

Secure work space

Research Facility

- Center for Advanced
 Thin-film Systems
- Materials Processing
- Metrology
- Robotics and Energetic Systems
- Sensors and Signals Research
- Thin Film Deposition and Analytical Facility

1

MDF – integration of cutting-edge manufacturing technologies

Metal Powder	Carbon Fiber			Manufacturing	larkot
 Bed Consolidation Direct Metal Deposition Polymer Extrusion Ultrasonic Consolidation 	 Precursor to Filament Filament to Carbon Fiber Carbon Fiber to Composite Material 	 Advanced Materia Processing Lightweight Metals Roll-to-Roll Low- Temperature Transient Field 	 Automation & Controls Modeling & Simulation Sensing, Tracking & Measurement Communicating Wirelessly Systems Engineering 	 Demonstration N Facility Facility Facility Facility Facility Market Driven Adop Market Driven Adop New Materials and Processes Transformational & Cross-Cutting for N Generation Product 	otion o lext-

Carbon Fiber Technology Center (CFTF) Delivers Unmatched Flexibility

- Highly instrumented, highly flexible conventional carbon fiber line for "any precursor in any format"
- Melt-spun fiber line to produce precursor fibers
- Provisions for additional future equipment
- Produce up to 25 tonnes/year of carbon fibers
- Demonstrate technology scalability
- Train and educate workers
- Work in partnerships with industry

Facility and equipment perspective

Building a bridge from R&D to deployment and commercialization

CFTF Engages the Entire Composites Value Chain

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Collaboration in Workforce Training

ORISE OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION OR RIDGE ASSOCIATED UNIVERSITIES

Oak Ridge National Laboratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

CARBON FIBER TECHNOLOGY FACILITY

Pool of Candidates

- DOL grant funded
- Located at ORNL
- Industry focused training
- For qualified unemployed or under-employed

(i)

Technician Internship Program

- High-quality STEM
 learning experience
- Collaboration with researchers in
 field of interest
- Growth of S&T talent

- Hands-on experience on complex CF line
- Learn S&T underpinning ORNL research
- Develop skills directly transferrable to industry

Longer term Vision:

- Develop workforce training system for future carbon fiber manufacturing partners
- (ii) Develop internship and other training programs from high school through university graduate level

Photo courtesy of Michael Patrick & Knoxville News-Sentinel

Oak Ridge Carbon Fiber Composites Consortium

Our Mission

To accelerate the development and deployment of new lower cost carbon fiber composite materials, creating a new generation of strong, light-weight materials to enhance America's economic competitiveness.

Established July, 2011

Value proposition

Serves as a platform for industry to develop a pre-competitive technology roadmap to accelerate the development and deployment of strong, light-weight materials

Enables industry to collaborate across the value chain to develop new precursors, explore new conversion technologies, and create new applications for low-cost carbon fiber composites

Scott Wellman

Carbon Fiber Composites

Currently at 50 Members and continuing to grow!

Consortium

- 3M Company
- ABC Group Sales & Engineering
- Advanced Composites Group
- Alpha Industries
- Ashland
- ATK Launch Systems
- Barge Waggoner
- BASF Corporation
- Chomarat NA, LLC
- CIMV
- Composite Applications Group
- Continental Structural Plastics
- Cytec Carbon Fibers
- Domtar
- Dow Chemical Company
- DowAksa
- Despatch Industries
- Faurecia
- Fibria
- Ford Motor Company
- General Electric
- Georgia-Pacific
- Global Composites Solutions
- Graftech International
- Hanwha Azdel

- Harper International
- Hills, Inc.
- Innovation Valley Inc.
- Innventia
- INOAC USA
- Lignol Innovations
- Materials & Chemistry Laboratory
- Metalsa Structural Products
- Metso Power
- NovusFolium
- Plasan Carbon Composites
- Renmatix
- Sabic Innovative Plastics
- SGL Carbon Fibers
- Sodra
- Southern University
- SSOE Group
- Steelcase
- TennEra
- Toho Tenax America
- United Technologies Research Center
- USEC
- UT-Battelle
- Virdia, Inc
- Volkswagen Group of America

CAK RIDGE NATIONAL LABORATORY

Grand vision

Extensive characterization 1	0 tons of tural bio-Cl							
Diamaga anging and autonoive abamietry	roduced	The vision is realized						
Process and property optimization								
Bio-CF production and compon	ent/system	prototyping						
Milestones								
Papers in high- Prototype Raw materials: Tensile properties	Bio-CF	1						
impact journals suppliers 1% strain 1% strain 1% strain 1% strain 32 Msi modulus 32 Msi modu	us duced	vehicles and blades						
VIPs drive bio-CF intensive vehicle(s) to Washington, DC								

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY