Building Technologies Program

Window and Envelope Solutions for Today and Tomorrow

Commercial Building Energy Alliance
October 12, 2011

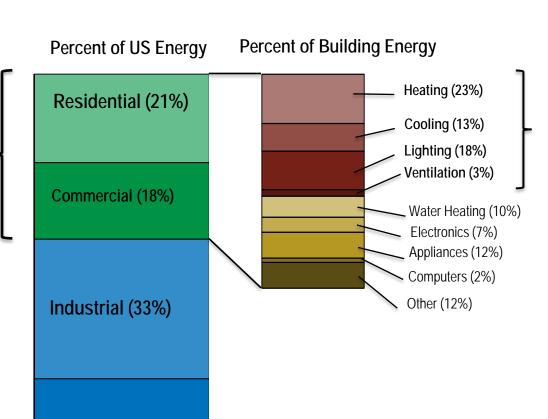
High Performance Windows Volume Purchase Program

Goals of this presentation

- Show DOE purpose and planning for window-related programs
- Introduce a market transformation program that is increasing the availability of highly insulating windows and low-E storm windows
- Explain the benefits of these products and how they work

DOE and Windows

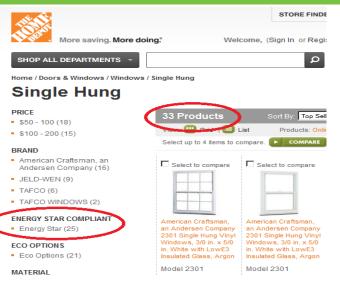
How the WVP program fits into the big picture


Terry Mapes
Pacific Northwest National Laboratory

Impact on US Energy Consumption

Why worry about windows?

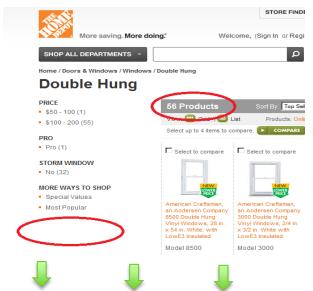
Buildings are responsible for about 40% of US primary energy consumption

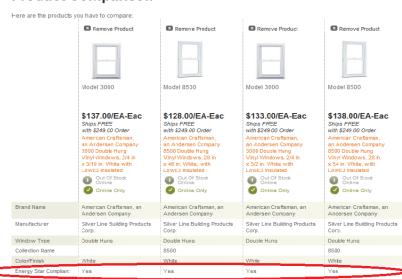


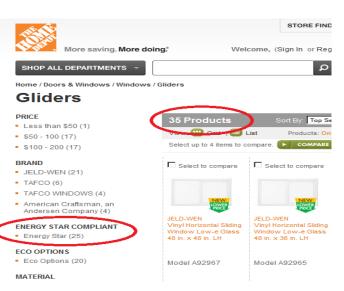
58% of the energy used in a building is impacted by windows. Almost 14% of the total energy in the US.

Transportation (28%)

Current Residential Windows Market

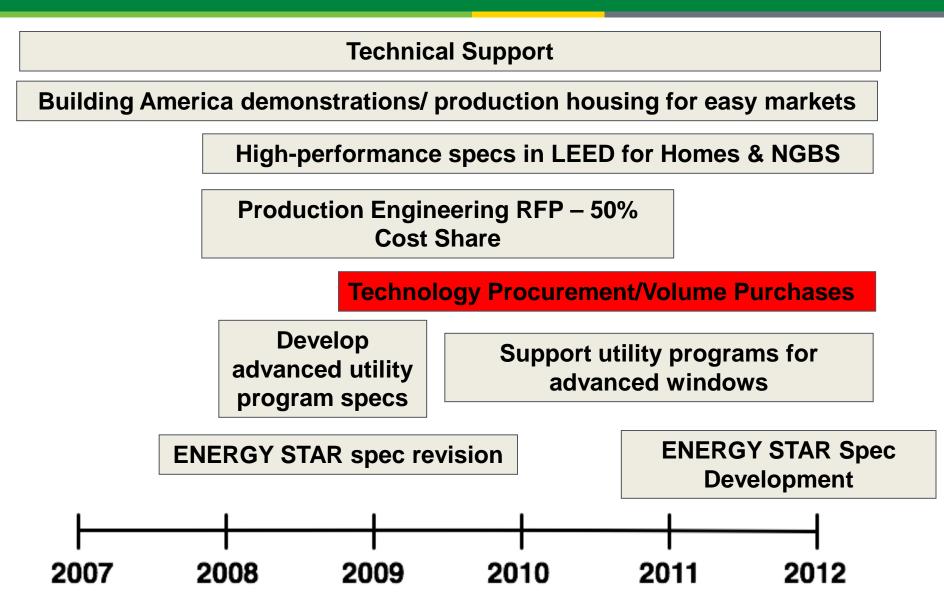



Three largest window categories


Over **85%**Energy Star
compliant

R3 is now becoming the BASELINE

Product Comparison


Total Building Envelope and Window R&D Budget

	Administration Budget Request	Enacted Appropriations
FY05	5.0M Windows	5.8M Windows
	0 Envelope	2.8M Envelope
FY06	5.0M Windows	*3.8M Windows (*earmarks)
	0 Envelope	2.9M Envelope
FY07 &	4.7M Windows	4.7M Windows
FY08	2.4M Envelopes	2.4M Envelope
FY09	5.2M Windows	5.5 Windows
	3.4M Envelopes	4.5 Envelope
FY 10	10.5M Windows	Core ARRA
	5.5M Envelope	10.5M Windows 25M
		5.5M Envelope
FY 11	10.5M Windows	TBD – Not expected to exceed FY10
	8.5M Envelope	Continuing Resolution
FY 12	25 M (9M BIPV)	TBD

Integrated Programs to Reduce Price of Highly Insulating Windows

DOE Goals for Windows Programs

Highly Insulating Windows

- Goal is U-factor 0.10
- Evaluate vacuum glazing
- Advance dynamic glazing

Market-Based Approach

- Alternative to codes and standards
- Technology specifications & procurement
- o Demonstrations

Prototype – Concept Window Highly Insulating and Dynamic SHGC 0.04 – 0.34

DOE Assists with Technical Support Activities

http://windows.lbl.gov/software

www.nfrc.org

 Full range of software support tools, education materials and expansion to new product categories

 Continued financial support to assist industry in rating and promoting efficient products

Contact Information

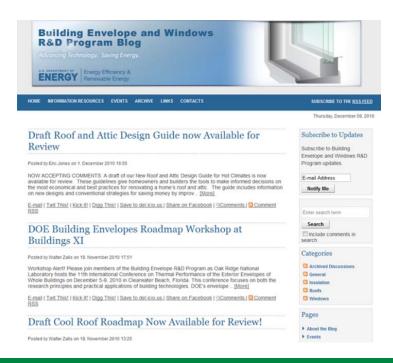
P Marc LaFrance, CEM

Technology Development Manager

Building Technologies Program

Office of Energy Efficiency and Renewable Energy

US Department of Energy


marc.lafrance@ee.doe.gov

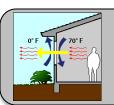
1-202-586-9142

Fax 1-202-586-4617

www.eere.doe.gov

www.eereblogs.energy.gov/buildingenvelope

Energy efficiency and the WVP Program products


Nils Petermann

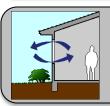
Alliance to Save Energy

Window Energy Ratings

Window energy performance metrics

U-factor

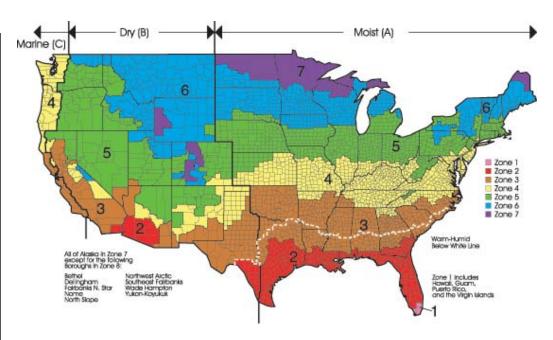
Measures how insulating a window is Lower = less heat loss


Solar Heat Gain Coefficient (SHGC)

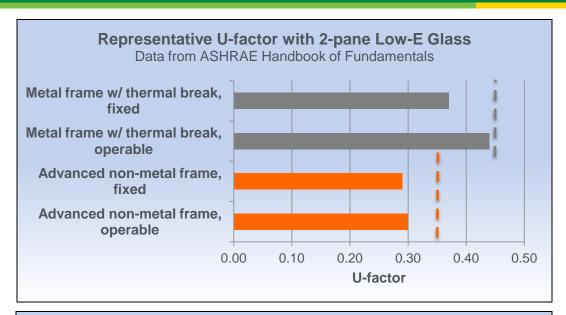
Fraction of solar energy entering window Higher = more solar energy

Visible Transmittance (VT)

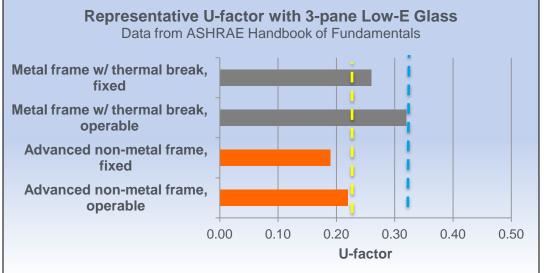
Fraction of visible light entering through window Higher = more daylight


Air Leakage (AL)

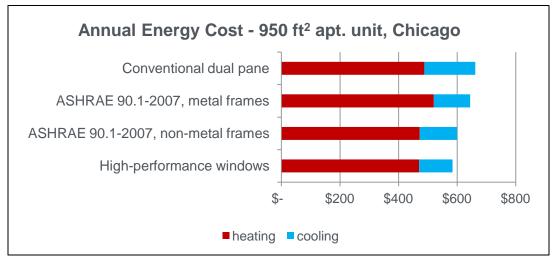
Volume of air passing through window Lower = less infiltration

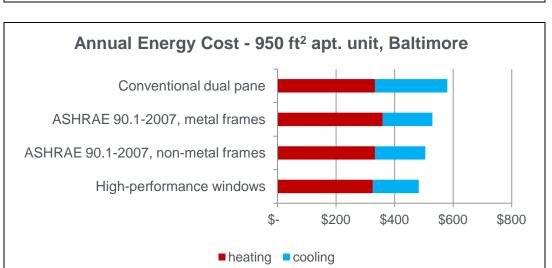

Energy codes require whole-window ratings based on NFRC standards

Energy Code Requirements: 2009 IECC / ASHRAE 90.1-2007


	2009 IECC / ASHRAE 90.1-2007			
Climate Zone	U-factor		SHGC	
Zone	Non-Metal Frame	Metal Frame	All Windows	
8	0.35	0.45	0.45	
7	0.35	0.45	0.45	
6	0.35	0.55	0.40	
5	0.35	0.55	0.40	
4	0.40	0.55	0.40	
3	0.65	0.65	0.25	
2	0.75	0.75	0.25	
1	1.20	1.20	0.25	

Window U-factors in Perspective

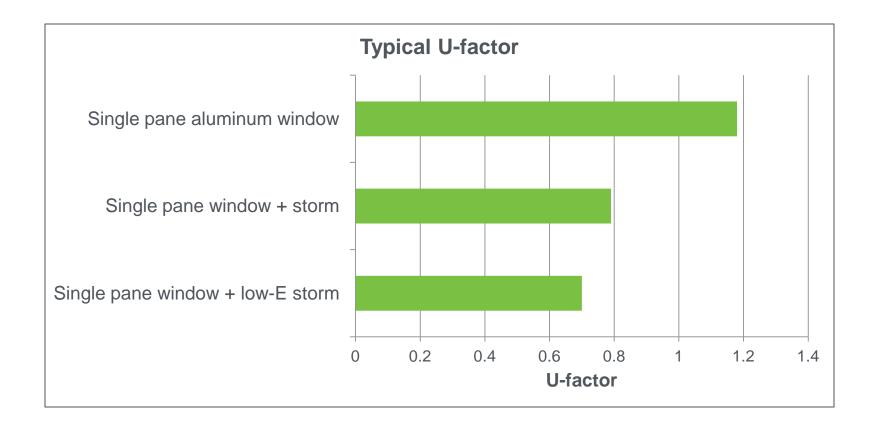

90.1-2007 Window U-factor Requirements					
Climate Zone	Metal	Non-Metal			
Climate Zones 7-8	0.45	0.35			
Climate Zones 5-6	0.55	0.35			
Climate Zone 4	0.55	0.4			



DOE High-Performance Window U-factor Specs					
Operable	Fixed				
0.22	0.2				
0.27	0.24				
0.32	0.27				
-	Operable 0.22 0.27				

Energy Cost Example Simulated 950 ft² apartment unit

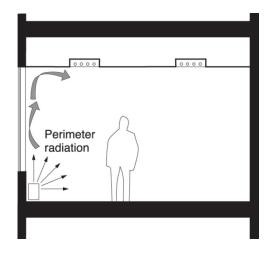
Simulated with EnergyPlus


35% window-to-wall ratio

Assumed energy prices:

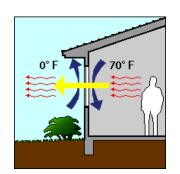
- \$1.20/therm natural gas
- \$0.12/kWh electricity

Low-E Storm Windows



Highly Insulating Windows and Heating System Design

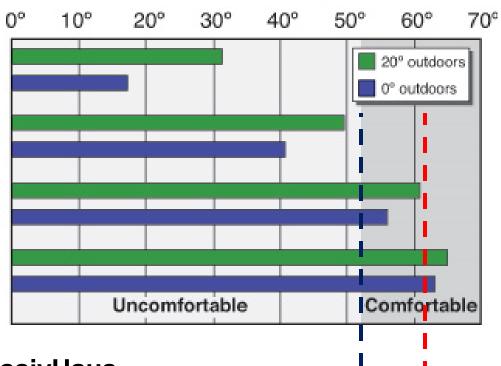
- Cold window surfaces are a main cause of discomfort
- Conventional solution: perimeter heating near windows
- Perimeter heat may not be necessary with highly insulating windows


Case in Point: Cambria Office Facility, Ebensburg, PA

- Triple-pane windows, U-factor 0.24-0.26
- Incremental cost of windows compared to dual pane: \$15,000
- No need for perimeter heating = \$25,000 up-front cost savings
- At 20°F outside, interior window surface remains at 62°F

Source: Carmody et al. 2004. Window Systems for High-Performance Buildings

U-factor and Winter Comfort


Inside Glass Surface Temperature (°F)

Single pane (U ~0.85)

Dual pane (U ~0.50)

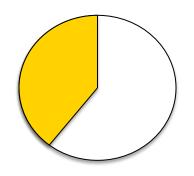
Dual pane low-E, gas fill (U ~0.35)

Triple pane low-E, gas fill, insulated frame (U ~0.20)

Guidance provided by the PassivHaus Standard and ISO 7730:

If window surface temperature is no more than 7-9°F below average room temperature, heating registers near windows are not needed.

Solar Heat Gain


Optimum solar heat gain coefficient (SHGC) depends on factors such as:

- Climate
- Orientation
- Available shading
- Internal heat loads

In most heating dominated climates (NYC, Boston, Chicago, Seattle, etc.) ASHRAE 90.1-2007 requires SHGC ≤ 0.40

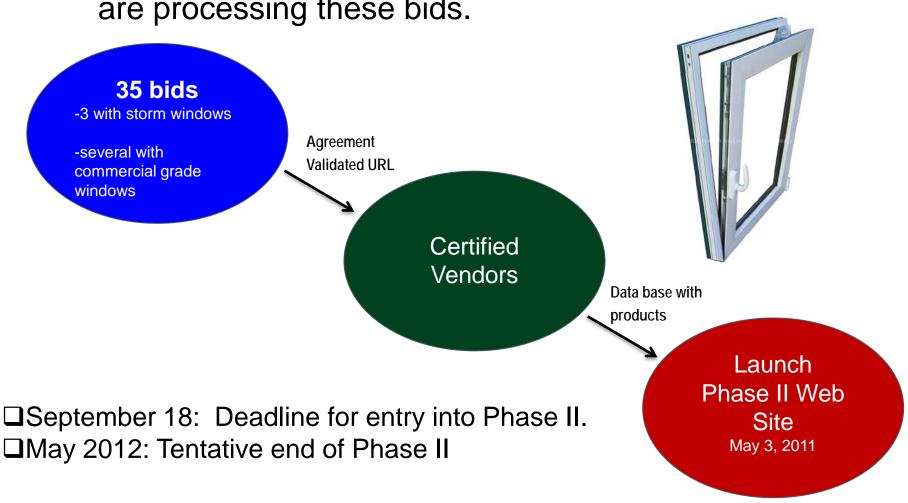
SHGC of commercial windows in Volume Purchase Program ranges between 0.15 and 0.37 Average SHGC: 0.24

What is the WVP Program?

High Performance Window Volume Purchase Program

What is the WVP Program?

- Market transformation program
 - Goal is to increase the availability of high performance products
- Website lists many manufacturers of high performance windows
 - Interested buyers can find products
 - Easier comparison of prices
 - Educate consumers about these products
- WVP staff does marketing, education and outreach about the products



Phase II Status

To date, we have more than 30 bids in Phase II and are processing these bids.

Program Specifications

Final Windows and Low-E Storm Windows Specifications and Certifications

High Performance Windows

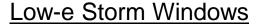
>U-factor: (R,LC) 0.20/0.22

(CW) 0.24/0.27 (AW) 0.27/0.32

>Air leakage: ≤ 0.30 cfm/ft²

> Condensation Resistance: ≥50

➤ Certifications: NFRC/NAFS


>Warranty (yr): 20 glass/10 non-glass

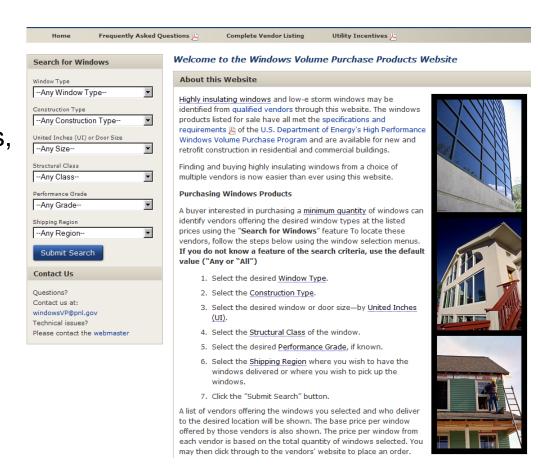
➤ NAFS 05: Performance Grade R25

➤ Emissivity: <0.22

➤ Certifications: ANSI/AAMA 1002.10-93

➤ Registry: IGDB (LBNL database)

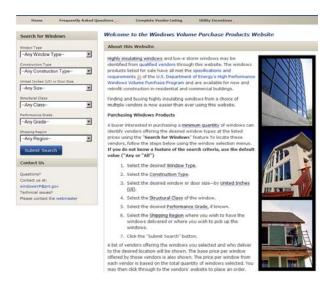
➤ Warranty (yr): 10 glass/non-glass

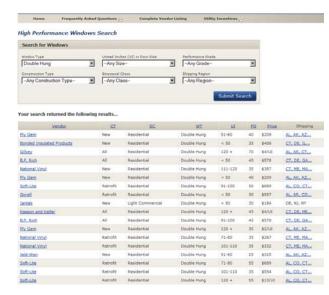


Windows Products Website

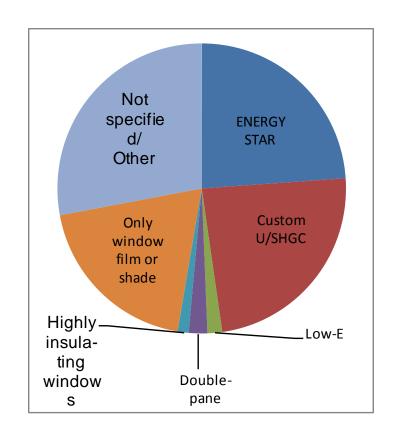
www.windowsvolumepurchase.org

- Many homeowners are responding.
- Focus is now on contractors, builders, remodelers, institutions, and weatherization agencies.
- Sales through 08/11:
 - ~5,000 windows
 - ~\$1.6M in sales
- Phase II products: May 3, 2011




Phase II

WVP Website:


- Database format allows for filtering by desired criteria
 - Window type and size
 - Structural performance class and grade
 - Shipping Region
- Discrete manufacturers' prices shown for each product
- More complete data available for each product
- Descriptor boxes for each vendor (coming soon)
- Shipping regions more specific

Current Windows Incentive Programs

- Over 200 individual programs that provide rebates or low-interest loans for windows, window films, sun screens and/or storm windows.
- Most programs incentivize ENERGY STAR or similar, or shading only

List of utility programs available at: http://www.efficientwindows.org/utilities.cfm

Contacts

Graham Parker, CEM/PBEP Pacific Northwest National Lab graham.parker@pnl.gov 509-375-3805

Terry Mapes
Pacific Northwest National Lab
terry.mapes@pnl.gov
509-371-6745

Nils Petermann
Efficient Windows Collaborative
NPetermann@ase.org
202-530-2254

Neal Humphrey
Efficient Windows Collaborative
NHumphrey@ase.org
202-448-8760

Walt Zalis
Energetics Incorporated
wzalis@energetics.com
410-953-6256

Myra Sinnott
Energetics Incorporated
msinnott@energetics.com
202-406-4123

NFRC Energy Ratings

Commercial Building Energy Alliance October 12, 2011

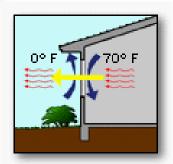
Ray McGowan-Senior Program Manager

NFRC—Introduction & Overview

- Formed by industry in 1989
- To provide standardized fenestration energy performance ratings
- Educational non-profit public/private organization, not a trade association, 501 C3
 - 17 on staff in five states, HQ near Washington DC
 - 800 participants (manufacturers labeling product)
 - 250 members (vote at meetings, develop standards)
 - Members may be:
 - Fenestration and related building industry
 - State energy offices
 - Design professionals
 - Utilities, consumer organizations
 - Anyone with a fenestration interest

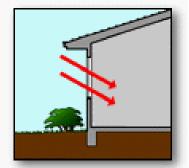
NFRC is Widely Referenced

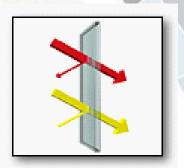
- IECC
- ASHRAE 90.1
- ENERGY STAR[©]
- USGBC's LEED program



NFRC Ratings

- Heat loss rating (U-factor)
- Solar Heat Gain rating (SHGC)
- Visible Transmittance rating (VT)
- Air Leakage rating
- Condensation Resistance rating (CR)


NFRC Ratings


U-factor (thermal transmission)

NFRC 100

SHGC (Solar Heat Gain) NFRC 200

VT (Visible Transmittance)

NFRC 200

NFRC Rating Determination

- Computer simulation is the basis of all ratings
- Simulation performed at standardized sizes & environmental conditions
- Simulation generates a whole-product rating
- Simulated U-factors validated by physical testing
 - 4000 tests/year

NFRC & Code Compliance

- Why the increased interest in compliance?
 - Energy price increases
 - Enhanced code enforcement by states
- State Energy Code requirements
 - IECC and ASHRAE 90.1 requires NFRC 100/200
 - No alternative

NFRC 100/200 Satisfied by

- Using WINDOW/THERM simulations plus NFRC certification for residential products
 - 95% manufacturer participation
 - Required by ENERGY STAR
- CMAST simulation for commercial products
 - Almost no participation, about 150 certificates exist to date!!!
 - Reason: lack of enforcement and understanding

Two ways for fenestration to comply with ASHRAE 90.1 or IECC:

- Default
- NFRC Ratings
 - NFRC 100 governs U-factor
 - NFRC 200 governs SHGC and VT
 - Whole product only
 - COG not allowed

NFRC In IECC 2009

Refer to Chapter 3

303.1.3 Fenestration product rating. U-factors of fenestration products (windows, doors and skylights) shall be determined in accordance with NFRC 100 by an accredited, independent laboratory, and labeled and certified by the manufacturer. Products lacking such a labeled U-factor shall be assigned a default U-factor from Table 303.1.3(1) or 303.1.3(2). The solar heat gain coefficient (SHGC) of glazed fenestration products (windows, glazed doors and skylights) shall be determined in accordance with NFRC 200 by an accredited, independent laboratory, and labeled and certified by the manufacturer. Products lacking such a labeled SHGC shall be assigned a default SHGC from Table 303.1.3(3).

NFRC in ASHRAE 90.1-07

- 5.8.2.4 U-factor. U-factors shall be determined in accordance with NFRC 100. U-factors for skylights shall be determined for a slope of 20 degrees above the horizontal.
 - 5.8.2.5 Solar Heat Gain Coefficient. SHGC for the overall fenestration area shall be determined in accordance with NFRC 200.

NFRC & Code Compliance

a. Determine fenestration used on project:

Excellent reference is the NFRC 'Bid Report'

NON-RESIDENTIAL FENESTRATION CALCULATION REPORT/ BID REPORT ACCORDING TO NFRC CMA PROCEDURES -NFRC STANDARD SIZE

NOTE: This is NOT an NFRC Label Certificate. This document can NOT be used in place of NFRC Label Certificate and can be used only for Bid and Design Purposes

PRODUCT LISTING:

ID				(0)0	Performance at NFRC Standard Size			
	Name	Framing Ref	Glazing Ref	Spacer Ref	U	SHGC	VT	
			//		Btu/h·ft2·F	-	-	
P-EFC-4207	SFTestBB	FA-EFC-6689	GA-SOU-3331	SA-PPG-2524	0.30	0.20	0.29	

FRAME, GLAZING and SPACER ASSEMBLIES:

GLAZING LISTING:

Glazing Ref	Suplier ID	Description
GA-S0U-3331	Southwall Technologies	all Mills

SPACER LISTING:

Spacer Ref	Suplier ID	Description	
SA-PPG-2524	PPG Industries		
FRAMING LISTING:			

FRAMING LISTING:

Framing Ref	Suplier ID	Description
FA-EFC-6689	EFCO Corporation	

NON-RESIDENTIAL FENESTRATION CALCULATION REPORT/ BID REPORT ACCORDING TO NFRC CMA PROCEDURES -**ACTUAL PRODUCT SIZE**

PRODUCT LISTING:

(40)				Fenestration Performance at Actual Size*					
ID	Qty	Total Area	Name /	EnergyPlus Report File	Width	Height	U	SHGC	VT
	1015	in²	P 4/C	7	in.	in.	Btu/h·ft ²·F	52	19
P-EFC-4 207	125	2159999.60	SFTestBB		120.00	144.00	0.24	0.21	0.30

Individual product performance at actual size is listed in the above table and has been determined in accordance with NFRC technical procedures; however the actual size performance calculations above are for information purposes and use in area-weighted average calculations and energy simulation programs.

NFRC & Code Compliance

NFRC 'Bid Report'

NON-RESIDENTIAL FENESTRATION CALCULATION REPORT / BID REPORT ACCORDING TO NFRC CMA PROCEDURES --NFRC STANDARD SIZE

NOTE: This is NOT an NFRC Label Certificate. This document can NOT be used in place of NFRC Label Certificate and can be used only for Bid and Design Purposes

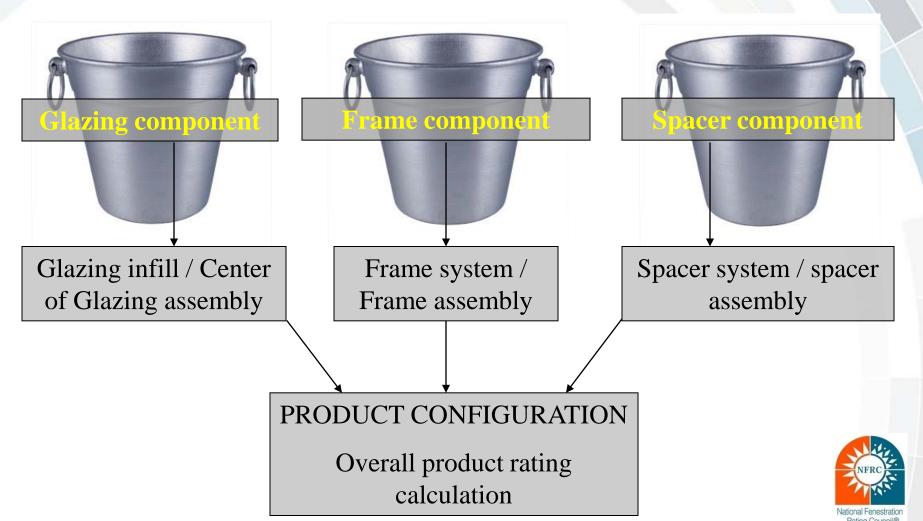
PRODUCT LISTING:

ID	Name	Framing Ref	Glazing Ref	Spacer Ref	U	SHGC	VT
					Btu/h-ft ² -F	3 12	
P-POL-1234	2011 Polaris Curtain Wall	FA-PO CW-001	GA-SOU-3331	SA-PPG-2524	0.40	0.29	0.40
P-POL-1234	2011 Polaris Store Front	FA-PO SF-001	GA-SOU-3331	SA-PPG-2524	0.45	0.30	0.39
P-POL-1234	2011 Polaris Casement	FA-PO CS-001	GA-SOU-3331	SA-PPG-2524	0.44	0.30	0.38

US Green Building Council's LEED Program

- Energy and Atmosphere section requires
 ASHRAE 90.1-2007 as mandatory minimum
 - NFRC 100 and 200 required by ASHRAE 90.1
 - LEED scores improve by beating this minimum
- All LEED projects require NFRC ratings
 - Poorly enforced
 - Recent activity indicating improved performance
- Improved daylighting improve LEED score als

Non-Residential Certification


D. Overview of the Component Modeling
Approach ('CMA') Program

New concept: build virtual products & projects using predefined and certified components from online CMA database to issue project-specific label certificates

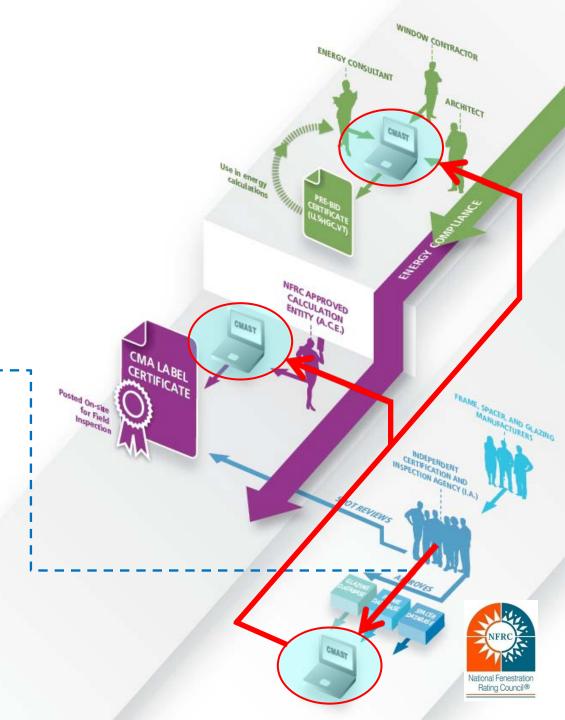
- The CMA process ~ Required Parties:
 - The manufacturers of frames, spacers, glass
 - The specifying authority (SA)
 - The accredited simulation laboratory (ASL)
 - The accredited testing laboratory (ATL)
 - The 'Approved Calculation Entity' (ACE)
 - The 3rd party validator ('IA')
 - NFRC

- The CMA process: The SA
 - > The role of SA (Specifying Authority) can be taken on by various stakeholders including (but not limited to):
 - The architect
 - The GC (general contractor)
 - The glazing subcontractor
 - The manufacturer of the fenestration system
 - The SA executes a project-specific license agreement with NFRC, and pays for the label certificate based on fenestration square footage (see fee schedule, on website)
 - The SA 'owns' the CMA Label Certificate

- The CMA process: The ACE
 - > The ACE (Approved Calculation Entity) is a new "entity" within NFRC
 - > The ACE is trained by NFRC to ensure quality
 - The ACE must be employed by an 'ACE Organization'; either Manufacturer ACE Org. or Independent ACE Org.
 - ➤ The ACE is the 'assembler' of CMA—approved components within CMAST
 - ACE Organizations are the only party who can generate a label certificate for a project

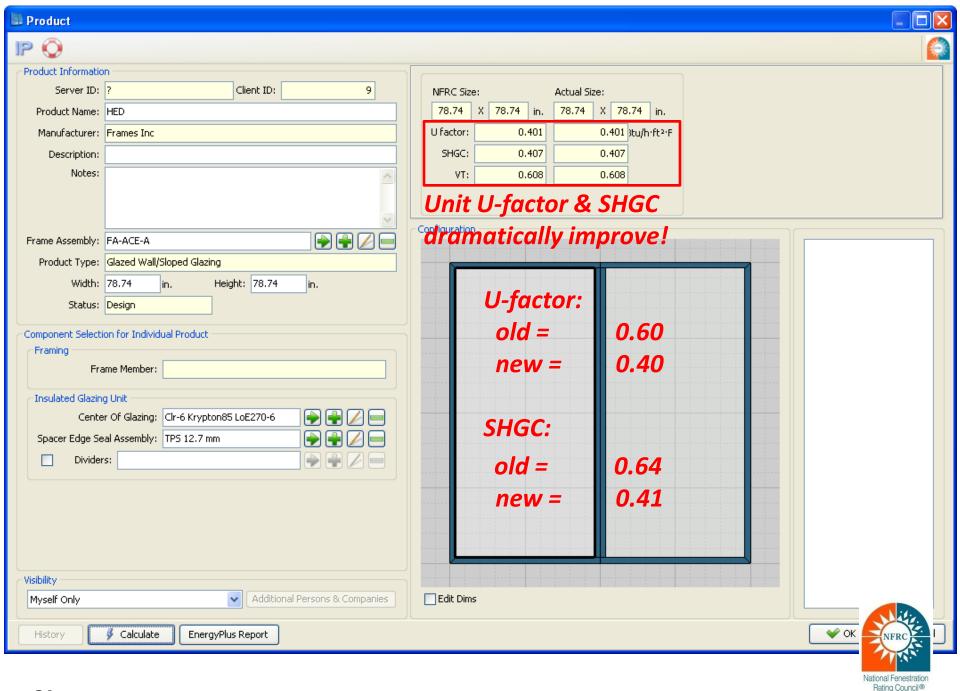
The CMA process: The IA

- The IA (Independent Certification and Inspection Agency) is an *existing* entity within the NFRC structure
- > Trained by NFRC on testing procedures of components
- > Reviews simulation lab and test lab reports
- Reviews calculation reports prepared by ACE
- Conducts random 'paper trail' audits of CMA Label Certificates



CMA Process

CMAST DEVELOPMENT


- The IA reviews and approves all components before they are available for use in CMA
- Once uploaded into the online CMAST database, components are available to *all users*

- CMA software tool ("CMAST") can:
 - Maintain libraries of component data
 - Define projects
 - Assemble components, and
 - Calculate whole product ratings

NFRC CMA Label Certificate (page 2):

NATIONAL FENESTRATION RATING COUNCIL LABEL CERTIFICATE

PRODUCT LISTING

FOR CODE COMPLIANCE

LABEL CERTIFICATE ID: XYZ-001

Issuance Date: mm/dd/vvvv

NFRC CERTIFIED PRODUCT RATING INFORMATION:*

The NFRC Certified Product Rating Information listed here is to be used to verify that the ratings meet applicable energy code requirements.

PRODUCT LISTING:

RTIFIED Performance Rating							
at NFRC							
	tandard Siz						
3	tandard Siz	ze					
factor**	SHGC**	VT**					
TO SOUTH	01100	• • •					

CPD ID	Total Area	otal Area Name Framing Ref Glazing Ref Spacer Ref		Spacer Ref	U-factor**	SHGC**	VT**	
	ft²					Btu/ hr•ft²•°F	•	-
P-PL-010	88.89	PL-2200 / PL-2210	FA-PL2210	GA-TT-001	SA-AM-001	0.53	0.58	0.66
P-PL-005	192.67	PL-3400 / PL-3401	FA-PL3401	GA-TT-001	SA-AM-002	0.56	0.57	0.65
P-PL-012	382.22	PL-5700 / PL-5720	FA-PL5720	GA-TO-002	SA-AM-001	0.52	0.21	0.30
P-PL-002	60.00	PL-1100 / PL-1152	FA-PL1152	GA-TT-001	SA-AM-001	0.42	0.51	0.62
P-PL-022	525.00	PL-9900 / PL-9915	FA-PL9915	GA-TO-003	SA-AM-002	0.45	0.15	0.19

FRAME, GLAZING and SPACER ASSEMBLIES:

FRAMING LISTING:

FRAMING REF	SUPPLIER ID	DESCRIPTION
FA-PL2210		Single Casement Thermally Broken Aluminum
FA-PL3401		Projecting (Awning) Thermally Broken Aluminum
FA-PL5720		Vertical Slider PVC reinforced with Steel
FA-PL1152		Vertical Slider Thermally Broken Aluminum
FA-PL9915		Fixed Thermally Broken Aluminum

GLAZING LISTING:

GLAZING REF	SUPPLIER ID	DESCRIPTION
GA-TT-001		1" Double Glazed, 1/4" HC Low-e, 1/4" Clear, Argon (90%), 1/2" gap
GA-TT-002		1" Triple Glazed, 1/8"Clear, Coated film, 1/8"SC, Argon (90%), 3/8" gap
GA-TT-003		1" Double Glazed, 1/4" Bronze, 1/4" SC Low-e, Argon (90%), 1/2" gap

SPACER LISTING:

SPACER REF	SUPPLIER ID	DESCRIPTION
SA-AM-001		250P Mill Finish Aluminum Low profile (1/2")
SA-AM-002		15A Polymer Spacer (3/8")

©2009 National Fenestration Rating Council All rights reserved. Page 2 of 3

NFRC CMA Label Certificate (optional pages): (projectspecific sizes)

NATIONAL FENESTRATION RATING COUNCIL LABEL CERTIFICATE

SUPPLEMENTAL PRODUCT INFORMATION

For Informational Purposes Only

Non-Certified Product Information at Actual Product Size

Reference NFRC Label Certificate ID: XYZ-001 for Certified Ratings for Code Compliance:

Individual product performance at actual size is listed in the table below and has been determined in accordance with NFRC technical procedures; however, these are not certified ratings. Certified ratings are determined at NFRC model sizes for comparative purposes and are listed on the actual Label Certificate referenced above. The actual size performance calculations below are for information purposes and use in calculations and energy simulation programs to estimate energy use, and are not intended for use in code compliance.

PRODUCT LISTING:

							CERTIF		ze
CPD ID	Qty	Total Area	Name	EnergyPlus Report File	Width	Height	U-factor	SHGC	VT
		ft²			in.	in.	Btu/ hr•ft²•°F	-	-
P-PL-010	2	48.00	PL-2200 / PL-2210	www.nfrc.org/CMAST/pi2200-2210.txt	48.00	72.00	0.48	0.59	0.66
P-PL-010	5	88.89	PL-2200 / PL-2210	www.nfrc.org/CMAST/bi2200-2210.txt	40.00	64.00	0.50	0.56	0.64
P-PL-005	6	192.67	PL-3400 / PL-3401	www.nfrc.org/CMAST/pi3400-3401.bd	68.00	68.00	0.49	0.58	0.65
P-PL-005	3	54.00	PL-3400 / PL-3401	www.nfrc.org/CMAST/bl3400-3401.bd	72.00	36.00	0.51	0.55	0.62
P-PL-005	5	167.22	PL-3400 / PL-3401	www.nfrc.org/CMAST/pl3400-3401.bd	86.00	56.00	0.48	0.59	0.67
P-PL-012	10	382.22	PL-5700 / PL-5720	www.nfrc.org/CMAST/bl5700-5720.bxt	64.00	86.00	0.33	0.22	0.30
P-PL-002	3	60.00	PL-1100 / PL-1152	www.nfrc.org/CMAST/pl1100-1152.bd	48.00	60.00	0.52	0.53	0.60
P-PL-022*	21	525.00	PL-9900 / PL-9915	N/A	N/A	N/A	N/A	N/A	N/A

^{*} This product and/or its glazing system is a test-only specimen, and fenestration performance is only available at the NFRC standard test size and not actual size. Therefore, EnergyPlus report files are not available for test-only specimens.

©2009 National Fenestration Rating Council All rights reserved. Page 1 of 1

Additional Resources

NFRC Webpage: www.nfrc.org

CMA Webpage: http://nfrc.org/sb_aboutprogram.aspx

Labs and Agencies: http://nfrc.org/labsagencies.aspx

NFRC Staff, Residential Product Certification Program Support:

Toni Stroud PCP Associate, Product Certification Program,

tstroud@nfrc.org

NFRC Staff, Commercial Product Certification Program Support

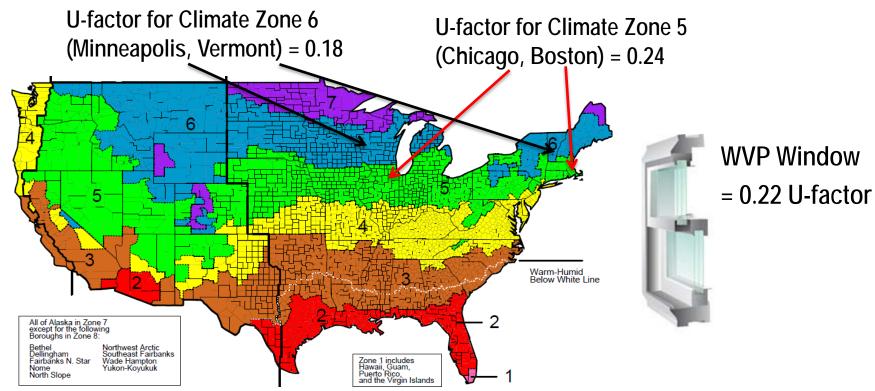
Jen Padgett CMA Technical Coordinator, jpadgett@nfrc.org

Ray McGowan Sr. Program Manager, <u>rmcgowan@nfrc.org</u>

• Call (301) 589-1776 and ask for anyone

Thanks!!!

Ray McGowan
Senior Program Manager, National Fenestration
Rating Council
240-821-9510, rmcgowan@nfrc.org


Extra Slides

Building Science Corporation (BSC) working with DOE's Building America

BSC developed recommendations for window performance in Northern climates that are closely aligned with WVP requirements

Based on Building America program experience – recommendations for homes with low energy needs that can be met by renewable energy sources

The Building Science Corporation Report: Building America Special Research Project: High R-Value Enclosures for High Performance Residential Buildings in All Climate Zones

< http://www.buildingscience.com/documents/reports/rr-1005-building-america-high-r-value-high-performance-residential-buildings-all-climate-zones>

Program Results and Feedback

- In 15 months, the program sold over 5,000 windows and achieved ~\$1.6 million in sales
- Over 40 Phase I participants
- Over 30 Round II participants

"We are glad to have been part of the R-5 Windows Volume Purchase program since its inception in 2010. The program has challenged B.F. Rich and our vendors to look at the development of new technologiesat an affordable cost to the consumer We have grown our R-5 program at B.F. Rich in both triple and double glazed windows...."

--George Simmons

President and CEO, B.F. Rich Windows & Doors

"The value of the DOE High Performance WVPP has been in setting the table for future sales during a down market. My belief is that manufacturers such as JELD-WEN have seen only small incremental sales increases attributable to the launch of the program. However, heightened awareness of high performance windows during a lean time when industry design and construction professionals are slow will serve to grow sales once the market picks up...."

--Rob Worthington

Market Development Director, JELD-WEN

Media Coverage and Support

- WVP program has appeared in 85 articles in top media and building industry publications in less than 2.5 years
 - New York Times: "DOE Aims to Make 'Low E' Windows a Must-Have for Home Construction," June 2010
 - Chicago Tribune: "Government raising bar on windows," January 2010
 - Window and Door: "Phase II Begins for DOE Volume Purchase Program," May 2011
 - Door and Window Manufacturer: "Are you ready for Phase II?," May
 2011
- Window and Door magazine conducted a poll in September 2011 asking,
 "Is Your Company Still Promoting R-5 Products"
 - Over 50% respond, "Yes, and it still works well for us"
 - Only 5% respond, "We did, but we have stopped"
 - The author states "I know a lot of manufacturers liked the simplicity of DOE's R-5 rating. It was something they could hang their hat on in their marketing."
- Obtained 23 letters of support from builders, weatherization agencies, nonprofits and others

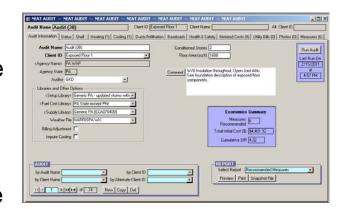
The Energy Trust of Oregon Aligns with WVP

- The Energy Trust of Oregon already provided incentives for ENERGYSTAR windows and needed a higher performance tier
- Current high performance tier aligns with the WVP program requirements, benefiting from increased product availability for incentive recipients

Applicable incentive

- Electric- and gas-heated homes: \$3.50 per square foot of windows installed with U-Value 0.22 or less
- No longer needs to be installed with second energy-saving improvement, though homeowners are encouraged to make further improvements

Increased Visibility of R-5 Windows



- A 2010 study completed by nationally recognized expert on green home design, Ann
 V. Edminster, reviewed popular energy improvement options, including R-5 windows
- "If I have \$15,000 to spend on my home to reduce energy use as much as possible, what gives the best bang for the buck?"
 - In the single-pane (R-1) window replacement scenario, the high R-value replacement windows were the top choice performance-wise with 38.4% energy savings improvement.
 - Compared to a whole house energy improvement package (12.4%) and installation of a PV solar system (12.1%)
 - Study results clearly indicate that high R-value replacement windows are competitive with other retrofit alternatives in various situations

"R-5 and above windows represent a game-changing entry into the residential replacement window market and into the broader realm of energy efficiency retrofit options. While in the past, window replacement was not typically viewed as offering a good return on investment from an energy perspective, it should now be considered routinely for home energy retrofit projects, with comfort improvements the icing on the cake."

--Ann V. Edminster M. Arch., LEED AP+ Homes

- Pennsylvania's state weatherization program priority list now includes low-E storm windows and highly insulating windows
 - WVP qualified windows recommended whenever windows must already be replaced
 - Low-E storm windows recommended as a cost effective measure when used over single pane or metal framed clear double pane windows.
- Changes to the priority list were due directly to the availability of products through the WVP program and through analysis provided by Energetics
 - Similar analysis can be requested by any state or similar program by contacting the WVP team

Low-E Storm Windows

- Selected as qualified measure with standard investment ratio (SIR) values substantially higher than 1.
 - SIR values over single pane wood frame windows with a furnace at 80% efficiency: 1.4-2.2 (Average= 1.7)
 - SIR values over metal frame double pane windows with a furnace at 80% efficiency: 1.3-2.1 (Average= 1.6)

R-5 Windows

- "Necessary Replacement Scenario" SIR= 1.6-3.0 (Average= 2.3)
- Price point for high performance replacement: Installed Cost/ft² for SIR=1

City	Scranton	Harrisburg	Pittsburgh	Philadelphia
Single Pane Wood Frame	\$26.45	\$22.36	\$25.55	\$25.15
Metal Frame Double pane	\$25.45	\$21.50	\$24.55	\$24.35

Educational Workshops and Conferences

- Coordinated 7 regional workshops across the country
 - Chicago, IL (September 2010)
 - Portland, OR (October 2010)
 - Philadelphia, PA (October 2010)
 - Columbus, OH (April 2011)
 - Clearfield, UT (May 2011)
 - Bozeman, MT (July 2011)
 - Golden, CO (October 2011)
- Facilitated 10 webinars with trade associations and nonprofits
- Presented at 28 conferences and meetings

