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Department of Energy’s Offi ce of Energy Effi ciency and 
Renewable Energy (EERE) within the Building Technologies 
Offi ce (Award Number EE0007056).

The work presented in this EERE Building America report 
does not represent performance of any product relative to 
regulated minimum effi ciency requirements.

The laboratory and/or fi eld sites used for this work are not 
certifi ed rating test facilities. The conditions and methods 
under which products were characterized for this work differ 
from standard rating conditions, as described.

Because the methods and conditions differ, the reported 
results are not comparable to rated product performance 
and should only be used to estimate performance under the 
measured conditions.



The U.S. Department of Energy 
(DOE) Building America 
Program has been a source 
of innovations in residential 
building energy performance, 
durability, quality, affordability, 

and comfort for 20 years.

This world-class research program partners with 
industry to bring cutting-edge innovations and 
resources to market. 

The Building America Program supports the DOE 
Building Technologies Offi ce Residential Building 
Integration Program goals to:

1. By 2020, develop and demonstrate cost-
effective technologies and practices that can 
reduce the energy use intensity (EUI) of new 
single-family homes by 60% and existing single-
family homes by 40%, relative to the 2010 
average home EUI in each climate zone, with a 
focus on reducing heating, cooling, and water 
heating loads.

2. By 2025, reduce the energy used for space 
conditioning and water heating in single-family 
homes by 40% from 2010 levels.

In cooperation with the Building America Program, 
the University of Central Florida’s Florida Solar 

Energy Center is one of many Building America 
teams working to drive innovations that address 
the challenges identifi ed in the Program’s 
Research-to-Market Plan.

This report, “Field and Laboratory Testing of 
Approaches to Smart Whole-House Mechanical 
Ventilation Control,” explores how smart ven-
tilation controls balance energy consumption, 
comfort, and indoor air quality (IAQ) by optimizing 
mechanical ventilation operation to reduce the 
heating and/or cooling loads, improve manage-
ment of indoor moisture, and maintain IAQ 
equivalence. 

As the technical monitor of the Building America 
research, the National Renewable Energy 
Laboratory encourages feedback and dialogue on 
the research fi ndings in this report as well as 
others. Send any comments and questions to 
building.america@ee.doe.gov.
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comfort, and IAQ by optimizing mechanical 
ventilation operation to reduce the heating 
and/or cooling loads, improve management 
of indoor moisture, and maintain IAQ 
equivalence according to ASHRAE 62.2. 
During periods that provide energy, comfort, 
and/or IAQ advantages, SVC systems 
ventilate more, whereas they operate less 
during periods that provide a disadvantage. 
Mechanical ventilation operation could be 
controlled in response to singular control 
variables (e.g., outdoor temperature), or 
in response to simultaneous consideration 
of the effect of multiple variables (e.g., 
occupancy, outdoor temperature, and outdoor 
moisture). No prior published research on lab 
or fi eld testing of smart ventilation control 
systems is available; however, developing 
“smarter” ventilation systems will enable the 
residential sector to more reliably design, 
install, and operate mechanical ventilation 
systems to achieve best-practice IAQ while 
minimizing energy and comfort impacts. 
Three approaches to smart ventilation control 
were investigated for this report—the fi rst 
two were investigated in an occupied existing 
home in the marine climate while the third 
was investigated in a lab home with simulated 
occupancy in the hot-humid climate: 

1. Seasonal-Temperature-Based 
Smart Ventilation Control (STSVC)

The main principle guiding STSVC for 
smart ventilation is to shift ventilation from 
seasonal time periods that have large indoor-
outdoor temperature differences to periods 
when these differences are smaller, and their 

However, due to lack of integration 
with standard heating and cooling 
systems, and perceptions from a 
portion of the homebuilding industry 
about risks related to increased 
energy use, increased cost, and 
decreased comfort, voluntary and 
code-required adoption varies amongst 
regions. Smart ventilation controls 
(SVC) balance energy consumption, 

EXECUTIVE 
SUMMARY
Whole-house mechanical ventilation 
is a critical component to a 
comprehensive strategy for good 
indoor air quality (IAQ). 
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energy impacts are expected to be less. In addition, during periods when 
indoor-outdoor temperature differences are high, stack-driven natural 

infi ltration can also be higher than an 
annual average. 

A low-cost, prototype STSVC that shut 
off the mechanical ventilation fan below 
a pre-determined outdoor temperature 
(57°F) was implemented in an occupied 
existing home in the marine climate zone 
of Olympia, Washington. Above 57°F, the 
fan operated at more than two times the 
rate determined by ASHRAE 62.2-2016 
for continuous ventilation. While this 
arrangement kept the fan off for much of 

the winter, natural infi ltration during periods of high indoor-to-outdoor 
temperature difference was modeled as suffi cient to prevent unacceptable 
acute exposure to pollutants as defi ned by ASHRAE 62.2-2016. Applying 
the ASHRAE 62.2-2016, Appendix C2.2.2 with hourly timesteps, 
simulation results show relative exposures (RE) maintained below 1.50, 
well below the standard’s recommended limit of 5 for 
every hour of the year, and that the scheme achieves 
an annual average RE of 0.84, below the standard’s 
recommended limit of 1.0.

Energy simulations indicated potential for 9% 
heating and cooling savings for the STSVC approach 
vs. continuous mechanical ventilation, and analysis 
of monitored data showed no negative impact on 
indoor moisture. Analysis of monitored data also 
showed that while indoor carbon dioxide (CO2) 
concentration was slightly higher on average with 
the STSVC approach compared to the continuous 
ventilation approach, other factors such as 
occupancy, air mixing, and changes to air exchange 
via open windows affect indoor CO2 concentration 
in similar proportions. Further study regarding other 

Seasonal-Temperature-Based 
Smart Ventilation Control 
(STSVC):
Simulated STSVC results show:

■ HVAC energy savings potential of 9%

■ Relative exposure to pollutants was in 

compliance with ASHRAE 62.2-2016.

Monitored results show:

■ Small differences in indoor carbon 

dioxide and relative humidity levels 

during all conditions.

A $20 controller does an adequate job of 
cycling fans, as intended.
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contaminants such as volatile organic compounds (VOCs), particularly 
during long periods where the fan is off, is warranted.

2. Occupancy Timer-Based Smart Ventilation Control (OTSVC)

In the same occupied, existing home, a timer system was used as a 
simplistic approach to modulate the ventilation system according to 
occupancy. As accurate, low-cost occupancy detection methodologies 
are not yet available, a fi xed occupancy schedule was programmed. 
True occupancy-controlled OTSVC systems would vary operation of a 
mechanical ventilation fan in response to direct measurement of whether 
the home is occupied or vacant. Resulting 
energy savings vary based on length of 
away time, and whether the away time 
corresponds with a time of day or year 
when outdoor conditions are such that 
air exchange poses energy impacts. 
Occupancy could be sensed directly with 
sensors, or occupancy could be inferred 
with signals from home security systems, 
smart thermostats, etc. 

In the Olympia, Washington, occupied 
residence, an OTSVC system that varied 
operation of a mechanical ventilation 
fan in response to a fi xed-occupancy 
schedule was tested. The simple, and low-
cost time clock control assumed no occupancy during a typical workday 
schedule, seven days each week, where the mechanical ventilation fan 
was not operated. The imperfect control resulted in periods of time when 
the ventilation system was operating during unoccupied periods, and 
vice versa. To examine effects of imperfect control, actual occupancy 
was tracked with sensors and logs. Monitored data and subsequent 
analysis determined that indoor conditions were wetter during OTSVC 
with less ventilation air creating less drying potential, but not so wet as 
to degrade comfort, IAQ, or durability. Monitored CO2 data showed that 
continuous ventilation maintained lower average concentrations than 
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OTSVC, but the differences remained small. Differences in monitored 
VOC concentrations between the two schemes were not significant. In 
addition, the differences in VOC and CO2 concentrations between OTSVC 
and continuous ventilation were similar when OTSVC was evaluated 
controlling for (eliminating) false occupied/unoccupied readings, indicating 
that sophisticated occupancy detection may not be required in all cases to 
achieve desired results. Energy simulations to estimate heating and cooling 
energy savings from OTSVC show a range of potential savings that can 
vary by a factor of 10 or more depending on influences such as climate, 
occupancy schedule, how the schedule corresponds with heating/cooling 
loads, and the amount of ventilation air reduction provided by the OTSVC 
strategy.

3.	Real-Time Weather-Based Smart Ventilation Control 
(RTWSV)

This system varies mechanical ventilation airflow with an algorithm 
that interprets measurements of current and 24-hour historical outdoor 

temperature and moisture. 
The algorithm, developed 
by the Florida Solar Energy 
Center (FSEC) as part of this 
project, optimizes delivery 
of mechanical ventilation 
airflow on a daily cycle to 
minimize sensible and latent 
load impacts, and simulations 
were conducted to tune the 
algorithm with differing 
flow targets and seasonal 
adjustment factors to 1) 
maximize heating and cooling 
energy savings compared 
to continuous ventilation, 
2) maintain similar indoor 
relative humidity, and 3) 
achieve RE with respect 

xi

Real-Time Weather-Based 
Smart Ventilation Control 
(RTWSV):
Ventilation air discharge into the building 

is 5°F higher than outdoor air temperature 

measured at weather stations during 

summer afternoons.

Monitored data show 10% average monthly 

cooling energy savings are achieved.

Fan energy use increased with increased 

capacity needed to achieve these savings 

and greatly eroded savings.

Simulations suggest this scheme will 

achieve compliant RE to pollutants 

according to ASHRAE 62.2-2016.



to ASHRAE 62.2-2016. A ventilation system controlled by the RTWSV 
algorithm was first simulated and then implemented in a laboratory home 
and tested side-by-side with an identical home operating with continuous 
mechanical ventilation. The Phase I simulation results suggest this scheme 
would produce annual average RE above the target, at 1.08; however, 
laboratory testing was conducted to ensure theoretical energy savings 
potential could be realized. Laboratory 
results of 5.5% (1.2kWh/d) cooling 
energy savings was obtained, but was 
found to be limited by two factors: 1) 
the capacity limits of the cooling system 
caused continuous operation during 
peak load that could not be curtailed 
by reduced ventilation flow, and 2) the 
capacity of the ventilation fan limited 
the ability of the fan to deliver large 
enough flows during mild conditions 
to sufficiently curtail the flow during 
peak conditions. It is noteworthy that 
while cooling system and fan capacity 
limited cooling energy savings, the 
smart ventilation system did improve 
indoor comfort by maintaining an indoor 
temperature 2°F cooler than the control building. Another laboratory 
finding was that the outside ventilation air discharge temperature into 
the home is fully 5°F higher than the outdoor air temperature at height 
during summer afternoon. In Phase II, the experimental fan capacity was 
increased to allow for more aggressive algorithm features enabling 1) 
cooling energy savings during peak load and 2) curtailment of potentially 
detrimental moisture addition during floating hours that were simulated 
in Phase I. Simulation results suggest the targeted annual average RE of 
1.0 is maintained, while the hourly RE is maintained below the maximum 
threshold allowed under ASHRAE 62.2-2016. In the laboratory, 10% 
monthly average cooling energy savings were measured in Phase II 
due to the reduction in sensible and latent load created by the advanced 
system. A fan with a maximum capacity nearly three times greater than 
the continuous fan was required to achieve these savings, and added fan 
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energy needs to be carefully considered so as not to erode potential cooling 
savings. The negative impact of increased fan power on the savings of the 
scheme suggests that the use of permanent magnet motors with much lower 
power would be highly benefi cial for both the ability to modulate fl ow over 
periods, rather than utilize a fi xed fan speed for varying amounts of time, as 
well as to reduce fan electric power consumption. 

Experimental testing of all smart ventilation strategies utilized sensor-
based measurements of occupancy and weather parameters collected at 
the actual test homes, but commercialized systems could leverage both 
broadband weather data available from internet-connected devices such as 
smart thermostats, as well as occupied/unoccupied signals from internet 
connected security systems, thermostats, etc. One lesson learned is that a 
weather sensor being physically located at a home could have an effect on 
resulting ventilation system operation, but also may more accurately refl ect 
actual ventilation air conditions than data from an airport weather station. 
If broadband weather data is used as an element of control, algorithms may 
need to be tuned to correct for local anomalies. 

To further explore challenges and opportunities related to 
commercialization of smart ventilation controls and systems, the Building 
America Partnership for Improved Residential Construction team conducted 
limited research to identify the size of a potential market for smart 
ventilation controls, and worked with stakeholders to convene an advisory 
group and solicit input on current and planned smart ventilation activities. 
Items related to system and component cost, integration, communication, 
design, commissioning, and credit in code and ratings were identifi ed. 
Current and future activities of the ASHRAE 62.2 committee, representing 
the authorizing environment, to enable smart ventilation controls in the 
marketplace are discussed in the report, including the development of 
equivalence methodologies and interpretation of constant vs. varying 
pollutant emission rates.
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1 Introduction 
Residential buildings account for 22% of total U.S. energy consumption, with the majority attributed to 
heating, ventilating, and air-conditioning (HVAC) systems. Residential energy efficient construction has 
focused on tighter envelopes to save energy; and this creates limited potential for air exchange (Parker 2014, 
Viera 2013, Offerman 2009, Sherman and Matson 2002). The purpose of mechanical ventilation is to provide 
outdoor air to ensure healthy indoor air quality (IAQ) by diluting or removing internally generated 
contaminants, and to control odor.  

IAQ is a complex result of occupant activities, human responses, source emissions, removal/dilution 
mechanisms, and outdoor conditions. Because people typically spend a significant amount of their time 
indoors, residential building science principles and ASHRAE Standard 62.2 (ASHRAE 2016), which defines 
best practice for mechanical ventilation recognize that energy conservation must not negatively impact 
occupant exposure to IAQ pollutants, such as volatile organic compounds, aldehydes, and particulates. 

However, many builders and contractors perceive best practice for mechanical ventilation as a risk, and its 
voluntary and code mandated adoption varies amongst regions (Martin 2014). Ventilation systems are not 
effectively integrated with space conditioning equipment, often resulting in the perception that mechanical 
ventilation is an optional feature, and risks from added costs and energy use to manage associated loads are 
perceived. In humid climates, this includes the need for supplemental dehumidification. In cold climates, 
sensible heat recovery is needed. One potential solution is to measure or forecast risk factors, such as extreme 
outdoor temperature and/or absolute moisture, and optimize ventilation delivery accordingly such that moisture 
and energy risks are minimized. Development of “smarter” ventilation systems will enable the residential 
sector to more reliably design, install, and operate mechanical ventilation systems designed to achieve best 
practice IAQ while minimizing energy and comfort impacts. 

The ASHRAE Standard 62.2 assumes that there will be a constant ventilation rate from a purpose-provided 
mechanical ventilation system, for every hour of the day, with guidance for the equivalent operation of 
intermittent ventilation system operation. Ventilation fan flows are typically determined based on an annual 
average natural infiltration rate, and ventilation fans are usually operated for 24-hours per day at the same rate 
regardless of occupancy, the actual natural infiltration rate for a given hour, or outdoor environmental 
conditions.  

Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical 
ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and 
maintain IAQ equivalence (Sherman, Walker, and Logue 2012) according to ASHRAE 62.2. SVC systems 
ventilate more during periods that provide energy, comfort, and/or IAQ advantages and less during periods that 
provide a disadvantage. Mechanical ventilation operation could be controlled in response to singular control 
variables, such as outdoor temperature, or in response to simultaneous consideration of the effect of multiple 
variables, such as occupancy, outdoor temperature, and outdoor moisture.  

Three approaches to smart ventilation control were investigated for this report—the first two were investigated 
in an occupied existing home in the marine climate while the third was investigated in a lab home with 
simulated occupancy in the hot humid climate: 

Seasonal Temperature-Based Smart Ventilation Control (STSVC): The main principle guiding STSVC for 
smart ventilation is to shift ventilation from seasonal time periods that have large indoor-outdoor temperature 
differences to periods when these differences are smaller and their energy impacts are expected to be less. In 
addition, during periods when indoor-outdoor temperature differences are high, stack-driven natural infiltration 
can also be higher than an annual average. Ignoring varying weather-driven natural infiltration can lead to 
excess ventilation and unnecessary energy expense, while overestimating the contribution of infiltration can 
lead to poor IAQ and contaminant exposure.  
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Occupancy Timer-Based Smart Ventilation Control (OTSVC): The OTSVC system varied operation of a 
mechanical ventilation fan in response to a fixed schedule roughly corresponding to whether the home is 
occupied or vacant. With any occupancy controlled system, resulting energy savings vary based on length of 
away time, and whether the away time corresponds with a time of day or year when outdoor conditions are 
such that air exchange poses energy impacts. In a true occupancy controlled system, occupancy could be 
sensed directly with sensors, or occupancy could be inferred with signals from home security systems, smart 
thermostats, etc. 

Real-Time Weather-Based Smart Ventilation Control (RTWSV): This system varies mechanical ventilation 
airflow with an algorithm that interprets measurements of current and 24-hour historical outdoor temperature 
and moisture. The algorithm optimizes delivery of mechanical ventilation airflow on a daily cycle to minimize 
sensible and latent load impacts, and was tuned via simulation to provide equivalent annual average relative 
exposure to ASHRAE 62.2. The control could use local measurements of weather parameters with sensors, or 
could use broadband weather data available from internet connected devices such as smart thermostats.  

1.1 Background 
Previous studies by Lawrence Berkeley National Laboratory (LBNL) have incorporated smart ventilation 
strategies that included the effects of other fans operating in the home as well as passive ventilation systems 
(Sherman and Walker 2011; Turner and Walker 2012). These studies included development of a ventilation 
model to include control algorithms and IAQ calculations suitable for evaluating performance of variable 
ventilation rate systems (Sherman and Walker 2011). LBNL used these simulations to develop a smart 
ventilation algorithm based on a minimum temperature threshold (Less, Walker, and Tang 2014). Another 
study (Walker, Sherman, and Less 2014) proposes a variety of additional control options for smart ventilation 
systems including occupancy and outdoor moisture. Recently, LBNL simulation techniques have been used to 
investigate the effect of smart ventilation control on indoor relative humidity (RH) (Less and Walker 2016). 
No prior published research on lab or field testing of smart ventilation control systems is available. 

LBNL work on ventilation equivalence was adopted by ASHRAE 62.2-2016 in the form of Appendix C, 
which provides a procedure to calculate pollutant exposure resulting from varying ventilation rates, relative to 
a continuous rate, and termed “relative exposure” (RE). The user has a choice of time period over which to 
average the exposure, for which a time varying ventilation system targets an average value of 1.0 to provide 
exposure to pollutants equivalent to a continuously operating mechanical ventilation system. A stipulation has 
been adopted that to remain equivalent to continuous ventilation, at no time can a time varying ventilation 
system produce an RE that exceeds five times the baseline. ASHRAE 62.2-2016 calls for exposure to be 
evaluated for all occupied periods, and the equivalence procedure is based on there being a constant indoor 
emission rate of pollutants during both occupied and unoccupied hours. 

1.2 Relevance to Building America Goals 
In pursuit of goals including reducing the energy use intensity of new homes by at least 60% and existing 
homes by at least 40%, relative to the 2010 average for homes in each major U.S. climate, Building America 
has identified limitations in available ventilation systems toward providing the control necessary to minimize 
the impact of mechanical ventilation on energy use and comfort. Elements of the Building America Research 
to Market Plan (Building America Program 2015) include efforts to validate/demonstrate smart ventilation 
controls, and to work with manufactures to commercialize those controls. To contribute to those efforts, 
research described in this report explores related questions including: 

• What are the potential energy savings from different SVC approaches? 

• How do prototype SVC controls function in actual field conditions? 

• What is the impact of SVC approaches on indoor environmental parameters including carbon dioxide 
(CO2), RH, and volatile organic compounds (VOCs)? 
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• What is the exposure generated by SVC approaches relative to ASHRAE 62.2-2016 continuous 
ventilation? 

• What considerations should manufacturers prioritize as they commercialize prototype controls (i.e. cost, 
commissioning, interoperability, etc.)? 
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2 Occupied Home Investigation of Smart Ventilation 
Control in Marine Climate Zone 4C 

STSVC and OTSVC were implemented and tested in an occupied existing home. The test home (Figure 2-1) is 
a two-story, 1,640 square foot historical house located in Olympia, Washington. It underwent a deep energy 
retrofit in 2010 that significantly upgraded the building envelope (R-38/R-49 ceiling, R15/R26 wall, R-30 floor 
insulation). Air leakage after the retrofit was measured at just over 5.0 air changes per hour at 50 Pa. Space 
conditioning is provided by a 1-ton single head ENERGY STAR® (heating season performance factor = 12, 
seasonal energy efficiency ratio 25) ductless heat pump (DHP) with the indoor unit located on the first floor. 
Whole-house ventilation is provided by the bathroom exhaust fan on the first floor. This is the fan controlled 
for the smart ventilation field tests. ASHRAE 62.2-2016 recommends minimum continuous fan forced 
ventilation of 40 cfm for the home, based on an annual average infiltration rate of 40 cfm, resulting in an 
average total continuous ventilation requirement of 80 cfm.1 

 

Figure 2-1. Test home, Olympia, Washington 

The data recorded for the field tests included: 

• Indoor temperature, RH, and CO2 levels in the main living area on the first floor and in the three upstairs 
bedrooms  

• Door closure status for the first-floor bathroom door and the three upstairs bedrooms  

• Outdoor temperature (north side of home, left photo in Figure 2-1) 

• Ventilation fan operation-on time 

• Whole-house and DHP energy use 

• Refrigerant line temperature for the DHP (as an indicator of DHP operation mode) 

• Occupancy sensor on the first floor and bedrooms  

                                                      

1 Although this was a retrofitted home, because of the intensive nature of the home changes we did not use the ASHRAE 62.2 Appendix A: Existing 
Buildings compliance path that adjusts whole-house ventilation rates if local kitchen and bath exhaust are not ASHRAE 62.2 compliant. 
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• Occupancy log maintained and updated weekly to inform occupancy 

• Total volatile organic compounds on each floor 

• Front and back door state loggers (also indicators of occupancy, but not used in current analysis).  

Data intervals were event dependent at 15-minute intervals then compiled at 1-hour intervals and merged into a 
data file for analysis. The fan operation data were compiled at one-minute intervals to examine fan operation in 
more detail. The monitoring equipment specifications and description are provided in Table 2-1. 

Table 2-1. Temperature & Occupancy Smart Ventilation Control 

Note: Total volatile organic compounds sensors and HOBO occupancy sensors were not installed until OTSVC 
testing began. 
 
2.1 Field Test of Seasonal Temperature-Based Smart Ventilation Control 
Modeling by LBNL utilizing typical meteorological year three (TMY3) data showed that to achieve annual 
average RE equivalent to a continuous fan flow of 40 cfm, the fan can be turned off below an outdoor 
temperature of 57°F, if the fan was operated at 90 cfm, its maximum capacity, when outdoor temperatures are 
above 57°F. A temperature of 57°F was chosen based on simulations suggesting the annual average RE target 
could be achieved given this fan capacity. With this approach, during hours when the fan is off, natural 
ventilation is sufficient to minimize short-term fluctuations in indoor RE such that the lack of fan run time 
should not present health concerns. Simulated results of the daily average RE and total ventilation flow for the 
scheme are plotted in Figure 2-2. Results show REs maintained below 1.50, well below the ASHRAE 62.2-
2016 recommended limit of 5 for every hour of the year, and that the scheme achieves an annual average RE of 
0.84, below the ASHRAE 62.2-2016 recommended limit of 1.0. 

Measurement Equipment Accuracy 

Data acquisition 
ONSET® HOBO – U30, 15  

Wattnode WNB-3Y-208-Pulse Input 
Adapters CT input 0.5 VAC, # VAC max 

512 K bytes, 15 min 
logging intervals 

+/- 5 s/week @77°F 

Temperature and RH indoors ONSET HOBO – U12-013 
temp. +/- 0.63°F 

RH +/- 3.5%  

Temperature and RH outdoors ONSET HOBO – U-10-003 
temp. +/- 0.95°F 

RH +/- 5.0% 
 +/- 0.36°F 

Temperature DHP vapor line ONSET HOBO – U30 12 Bit temp. Sensor  +/- 0.36°F 
Energy – total & DHW loads  ONSET HOBO – U30 and CT 100 & 50 A +/- 10%–130%  

Carbon dioxide Veris Industries #CWLSXX 30 ppm +/- 2%  

Total volatile organic compounds 
Power Wise inSense Multi-Sensor Rev. 

2.0 
E-monitor 

Occupancy data loggers & sensors ONSET HOBO – UX90-006 39.4 ft max range 
Window and door state loggers ONSET HOBO – UX90-001 +/- 1-min per month 

Fan run time loggers 
ONSET HOBO – UX90-001 w/ Veris 

Industries Hawkeye 300 CT 
Low 0.15 A CT  
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Figure 2-2. Seasonal temperature-based smart ventilation control simulated total ventilation (infiltration only when there is 

no fan flow or fan flow + modified infiltration) and daily average RE using Washington area TMY3 data 

A prototype STSVC system was implemented in the test home and tested during winter of 2016. No change 
out of the existing ventilation fan was required because it had excess capacity to run at 90 cfm. An outside 
thermostat/relay control was installed to control the fan and set to lock out below 57°F. This is a simple 
outdoor thermostat connected to a line-voltage relay located on the shaded side of the home. The STSVC 
prototype control used in the test home was purchased for less than $20 and required less than an hour of 
electrical work to install. As seen in Figure 2-3, the outdoor temperature sensor was located on the west side of 
the house behind the outdoor unit for the DHP, which provides shading from direct sunlight.   

 

Figure 2-3. Fan controller and outdoor temperature sensor 

To estimate the difference in performance and energy use, weekly flip-flop tests were conducted, during which 
the ventilation system control alternated between 40 cfm continuous use and the prototype STSVC, which 
ventilates at either 90 cfm or no fan flow based on outdoor temperature.  

2.1.1 Ventilation Control 
Testing of the ventilation fan control modes began on April 27, 2015. One of the questions answered by the 
field testing was that the relatively low-cost fan control operated as intended. Three issues were considered: 
fan cycling, whether the temperature control was working properly, and differences in outdoor temperature 
measurements. 

Fan cycling - There is a 1-minute delay in the fan controller and a 0.5°F deadband between when the fan turns 
on and off to avoid rapid cycling of the fan. A review of 1-minute fan-on time data indicates there were a little 
over 40 instances of rapid fan cycle flip-flop—on-off-on or off-on-off in consecutive 1-minute periods—
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during the 1,466 hours of temperature-based fan control. While these instances were fairly isolated, they do 
indicate some fan cycling did occur. This could occur more frequently during spring and fall periods when 
temperatures are more often around 57°F. This suggests further research and discussions with fan 
manufacturers to evaluate a slightly longer delay period on the controller may be appropriate (2 or 3 minutes). 

Temperature Control - The thermostat controlling the fan is located on the west side of the house behind the 
outdoor unit of the DHP. This location provides shading from direct sun and some air movement when the heat 
pump is operating. The temperature of the fan controller was not monitored, so it is not possible to directly 
compare the fan control temperature and fan run-time. Outdoor temperature was measured at two locations on 
the porch on the north side of the house: one below and one above the porch deck. Hourly average 
temperatures were recorded. This does not allow for a precise comparison of fan control since temperature can 
be above and below the 57°F fan control set point during an hour. However, comparing the average hourly 
outdoor temperature with fan run-time during the hour gives an indication whether the temperature control was 
functioning properly.  

Figure 2-4 indicates the fan temperature control worked properly. The fan was always off when the average 
hourly outdoor temperature was less than 55°F. The fan was always on when the average hourly outdoor 
temperature on the porch was greater than 60°F with a handful of exceptions. These exceptions occur on 
summer mornings when the temperature was rising rapidly, so that temperatures during a portion of the hour 
were below the fan set point.2 For hourly average temperatures between 55°F and 60°F, there is a mix of 
operation as expected since the outdoor temperature during an hour could be above or below the fan control set 
point, but the fan is increasingly on as the outdoor temperature rises. 

 

Figure 2-4. Ventilation fan operation at different average hourly outdoor temperatures 

Table 2-2 shows the periods for the temperature-based and continuous control modes along with the fan speed 
and the percent on and off time. Note that for periods 2 and 9 the fan speed was reduced, but the control was 
not re-set from temperature-based control to continuous control. Thus, there are more temperature-based 
control periods and for two of these the fan speed was 40 cfm rather than 90 cfm.  

                                                      

2 There is also some evidence that the outdoor temperature sensor on the porch on the north side of the house is being influenced by sun light on the porch 
early in the morning. Temperature would rise until 8 a.m. or so and then slightly drop or stay stable before rising during the mid-day. 
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Table 2-2. Control Details for STSVC Test Home 

Period ID Control Start Date End Date On-Speed % time on % time off 
0 Pre-Period April 14 April 27 50 67 33 
1 Temp.-Based April 27 May 4 90 45 55 
2a Temp.-Based May 4 May 13 40 35 65 
3 Continuous May 13 May 18 40 100 0 
4 Temp.-Based May 18 May 25 90 53 47 
5 Continuous May 25 June 15 40 100 0 
6 Temp.-Based June 15 July 7 90 94 6 
7 Continuous July 7 July 13 40 100 0 
8 Temp.-Based July 13 July 21 90 98 2 
9a Temp.-Based July 21 July 27 40 92 8 
10 Temp.-Based July 27 Aug. 3 90 95 5 
11 Continuous Aug. 3 Aug. 12 40 100 0 
12 Temp.-Based Aug. 12 Aug. 17 90 96 4 
13 Continuous Aug. 17 Aug. 26 40 100 0 
14 Temp.-Based Aug. 26 Sept. 11 90 80 20 
15 Continuous Sept. 11 Oct. 5 40 100 0 
16 Temp.-Based Oct. 5 Oct. 28 90 44 56 
17 Continuous Oct. 28 Nov. 12 40 100 0 
18 Temp.-Based Nov. 12 Nov. 21 90 1 99 
19 Continuous Nov. 21 Dec. 9 40 100 0 
20 Temp.-Based Dec. 9 Dec. 18 90 0 100 

a Contains periods of incorrect fan flow during temperature-based operation. 

The data in Table 2-2 show that in temperature-based control mode the fan was off a little more than half the 
time in May. However, as outdoor temperatures increased in June and July, the fan operated over 90% of the 
time, and continued to do so until outdoor temperature began to cool off again in September. 

Outdoor Temperature Differences - To compare the sensitivity of the location of the temperature sensor, the 
two outdoor temperature measurements on the porch were compared. These sensors were near each other, one 
below the porch and one above the porch on the north side of the home (left photo in Figure 2-1). 
Temperatures are very similar (Table 2-3), with the sensor below the porch having an average and median 
temperature 0.8°F cooler than the sensor above the porch. This comparison suggests either of these 
temperature sensors would provide very similar fan control. For future field testing, it would be valuable to 
record the fan control temperature values so they can be compared to other sources.   
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Table 2-3. Comparison of Outdoor Temperature Measurements (°F) 

 
Below Porch Above Porch 

Median 55.08 55.88 

Average 56.08 56.86 

Std. Dev. 9.70 9.80 

Max. 91.12 91.43 

Min. 29.66 29.99 

Count 2,951 2,951 

2.1.2 Indoor Air Quality – CO2 and Relative Humidity 
A second question addressed by the field testing is whether the fan control had any impact on IAQ. Indoor CO2 
and RH were measured to check if there were differences between continuous fan operation and temperature-
based fan operation. Average hourly CO2 in the main living area is plotted against outdoor air temperature in 
Figure 2-5. 

 

Figure 2-5. Hourly average CO2 concentration vs. outdoor temperature for the STSVC test home. Blue symbols indicate 
hours when the temperature override control was active, with 0 cfm of ventilation delivered below 57°F and 90 cfm of 

ventilation delivered above 57°F. Red symbols indicate hours with 40 cfm continuous ventilation 

For the evaluation of CO2, only periods when the house was fully occupied (three occupants) and the fan 
control mode was operating as intended are included. Still, unknowns remain that generate uncertainty in the 
results, such as if guests were in the home or if kitchen or bath exhaust fans were operating. CO2 levels in the 
main living area and master bedroom are considered at temperatures below 55°F and above 60°F to identify 



Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control 

 

10 

differences between the control modes. The main living area is on the first floor, the master bedroom is on the 
second floor, and the ventilation fan being controlled is in the first-floor bathroom. 

As seen in Table 2-4, average CO2 concentration at outdoor temperatures below 55°F are around 600 ppm and 
above 60°F around 450 ppm. The very low indoor CO2 levels (near ambient levels) are when the outdoor 
temperature is above 60°F. The residents indicated that windows were closed throughout the heating season 
but were often open at night in the summer months. Therefore, the following analysis screens out June–
September. The highest CO2 levels in the Washington home occurred when all windows were closed. Levels 
of CO2 tended to be higher with STSVC, particularly at lower temperatures. A two-sample t-test shows that the 
difference in CO2 levels is statistically significant, with the STSVC being statistically higher (average 748 
ppm) than the continuous ventilation (average 666 ppm) at the 95% confidence level (p <0.0001). Above 57ºF 
(14°C), the CO2 levels in STSVC mode should be lower because of higher ventilation from fan operation at 90 
cfm instead of 40 cfm. However, this is not the case. A two-sample t-test shows that CO2 in STSVC mode in 
the main living area when outdoor temperature is above 57ºF (14°C) averaged 567 ppm compared to 527 ppm 
with continuous ventilation, and that this difference is statistically significant at the 95% confidence level (p = 
0.0024). This is possibly due to differences in occupancy, air mixing, and possibly some window opening. The 
small differences in CO2 levels during all conditions for the two modes of operation suggest that other 
influences on CO2 were greater than the control mode. Further study regarding other contaminants, particularly 
when the ventilation system is off in STSVC mode, seems warranted.  

Table 2-4. Main Living Area CO2 Levels at Outdoor Temperatures below 55°F and above 60°F for Continuous and 
Temperature-Based Fan Control 

 Carbon Dioxide Concentration (ppm) 

 
Continuous Vent <55 TSVC <55 Continuous Vent >60 TSVC >60 

Median 614 579 429 432 

Average 617 600 456 458 

Std. Dev. 117 118 84 75 

Max. 889 894 969 823 

Min. 417 396 380 394 

Hours 143 100 333 103 

 

Indoor RH was also measured as an indicator of IAQ. Indoor RH levels in the main living area (Figure 2-6) 
and master bedroom (Figure 2-7) are primarily between 40% and 60%, with the temperature-based RH levels 
trending a little higher than the continuous RH levels, especially when the outdoor temperatures are colder. 
This suggests that indoor RH is staying at comfortable levels in the house. There is little difference in the 
indoor RH for the continuous and temperature-based control modes. The likelihood that windows were opened 
at higher outdoor temperatures would tend to minimize any differences.  
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Figure 2-6. Hourly indoor RH versus outdoor temperature for the main living area 

 

Figure 2-7. Hourly indoor RH versus outdoor temperature for the master bedroom 

Analysis of indoor moisture is not straightforward for a variety of reasons, including that RH is temperature-
dependent, outdoor air can be a significant source, and there can be significant moisture storage in building 
materials and furnishings. The first two of these issues can be addressed by using the “moisture balance” 
technique (Francisco and Rose 2010). This technique compares the indoor vapor pressure (which is 
temperature-independent) to the vapor pressure outdoors over a range of outdoor temperatures. The method 
involves preforming a linear regression on the data between 68°F and 32°F and forcing the regression through 
zero at 68°F. The value at the 32°F intercept is the vapor pressure excess value used to characterize the home. 
The analysis found that with the temperature-based control, the vapor pressure excess was 616 Pa; for 
continuous ventilation, the vapor pressure excess was 472 Pa. The direction of this change is as expected since 
less dry, outdoor air is introduced during STSVC. Qualitatively, while the STSVC results in wetter indoor 
conditions, the difference from continuous ventilation is not enough to affect comfort or durability.  
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2.1.3 Ductless Heat Pump Energy Use 
A third question addressed by the field testing is whether the fan control had any impact on the energy use of 
the DHP. Figure 2-8 shows that there is significant scatter and suggests that these results may not be 
statistically significant. Blue symbols indicate days when the temperature override control was active, with 0 
cfm of ventilation delivered below 57°F and 90 cfm of ventilation delivered above 57°F. Red symbols indicate 
days with 40 cfm continuous ventilation. It is difficult given the small STSVC “signal” energy savings to 
“noise” to determine statistical significance from these data. Therefore, EnergyGauge USA Simulation 
Software was employed to estimate STSVC energy savings.  

 

Figure 2-8. Daily space conditioning energy use vs. outdoor temperature for the STSVC test home. Blue symbols indicate 
days when the temperature override control was active, with 0 cfm of ventilation delivered below 57°F and 90 cfm of 

ventilation delivered above 57°F. Red symbols indicate days with 40 cfm continuous ventilation. 

Energy simulation of the temperature override control utilizing EnergyGauge USA indicates potential for 9% 
annual space conditioning energy savings; annual energy savings are 10% when vent fan energy is considered. 
Details are shown in Table 2-5. 

Table 2-5. Modeled Energy Savings for Temperature Override Control at the STSVC Test Home 

Case Cooling  
Cooling 

Fan 
Vent Fan 

Cool Heating 
Heating 

Fan 
Vent Fan 

Heat  Total 
Continuous Vent Energy 

Use (kWh/yr) 229 82 23 1,700 273 26 2,333 
STSVC Energy Use 

(kWh/yr) 216 77 22 1,566 217 5 2,103 
Energy Savings 

(kWh/yr) 13 5 1 134 56 21 230 
Cost Savings ($/yr) 1.3 0.5 0.1 13.4 5.6 2.1 23 

Savings (%) 5.7 6.1 4.3 7.9 20.5 80.8 9.9 
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2.2 Field Test of Occupancy Timer-Based Smart Ventilation Control 
The same test home used for the STSVC experiment was switched over to an OTSVC, and eight bi-weekly flip 
flop tests (but a week was lost to atypical holiday behavior, for 15 total weeks) were conducted during the 
period from November 2016 to March 2017 as shown in Table 2-6. 

Table 2-6. Weekly Flip Flop Dates for OTSVC (2016–2017) 

 
Figure 2-9 shows the timer that was employed to control the whole-house exhaust fan during the OTSVC field 
testing. The OTSVC timer prototype control used in the test home was a simple 24/7/365 line voltage timer set 
by the occupants.   

  

 

Figure 2-9. Whole-house exhaust fan timer deployed for OTSVC field testing 

Period ID Vent Control Start Date End Date Outdoor Temp. 
(°F) 

Outdoor RH 

1 OTSVC Nov. 13 Nov. 19  50.5   81.3  
2 Continuous Nov. 20 Nov. 26  47.0   88.9  
3 OTSVC Nov. 27 Dec. 3  45.2   83.9  
4 Continuous Dec. 4 Dec. 10  37.0   75.6  
5 OTSVC Dec. 11 Dec. 17  36.0   75.7  
6 Continuous Dec. 18 Dec. 22  38.7   77.0  
7 Continuous Jan. 12 Jan. 7  36.4   86.4  
8 OTSVC Jan. 8 Jan. 14  40.9   88.6  
9 Continuous Jan. 15 Jan. 21  45.6   89.7  

10 OTSVC Jan. 22 Jan. 28  48.4   86.1  
11 Continuous Jan. 29 Feb. 4  42.5   84.0  
12 OTSVC Feb. 5 Feb. 11  45.9   83.9  
13 Continuous Feb. 12 Feb. 18  49.6   86.4  
14 OTSVC Feb. 19 Feb. 25  44.5   79.0  
15 Continuous Feb. 26 March 4  47.8   82.5  
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The timer employed allowed for automatic flip flop during the experiments; however, a lower cost simple line 
voltage timer could have been selected. An OTSVC simple timer with weekend and weekday settings and a 
365 clock can be purchased for under $50 and required less than an hour of electrical work to install. The timer 
was configured to operate the ventilation fan from 5 p.m. to 9 a.m. seven days a week at 40 cfm, and off during 
other hours. It was understood that this operation would not enable the home to maintain equivalent RE with 
ASHRAE 62.2-2016 (the simulation predicted an annual RE of 1.70 for this scheme), and would have required 
a flow rate of roughly 90 cfm during occupied hours to do so. However, the impact of a simple form of 
occupancy control on indoor air quality and indoor moisture was of interest.  

2.2.1 Comparing actual occupancy to the timed schedule 
The programmed occupancy schedule approximated the actual occupancy schedule of the occupants, but 
certainly resulted in some ventilation during unoccupied periods, and vice versa. The actual schedule often 
involved two occupants arriving home at 3 p.m. not 5 p.m., and therefore the ventilation system was not 
operating for roughly 2 hours per day when the OTSVC home was occupied. An ideal OTSVC control would 
sense when occupants are home and override the timer setting, to ensure that the home is ventilated when 
occupied.  

A great disparity was found between the nighttime sensed and logged occupancy. During the night, the 
occupancy sensor often reported false negatives, presumably due to lack of movement while residents were 
sleeping. Figure 2-10 is an example of this in the master bedroom, comparing about a week of sensed 
occupancy (red) to logged occupancy (green). Sensed and logged occupancy alignment is identified where red 
and green overlap. Ventilation hours are noted in light blue. The left half of the plot is during constant flow 
and the right half during the OTSVC scheme. Because of the discrepancy between sensed and logged 
occupancy, the logged occupancy data were used during the night. Occupancy logs were only recorded at 
night; therefore, sensed occupancy data were used during the day. Nighttime logs and daytime-sensed 
occupancy data were resolved on an hourly basis, tallying hours with any sort of occupancy and hours with no 
occupancy at all.  

 

Figure 2-10. Master bedroom sensed vs. logged occupancy spanning constant flow and OTSVC schemes 

2.2.2 Ductless heat pump energy use 
Considering the difficulty in discerning differences in DHP energy use experienced during STSVC and 
OTSVC, and because the energy savings regression “signal” was expected to be even smaller than in the case 
of STSVC and difficult to see from the energy use variability “noise,” analysis of monitored DHP energy use 
during OTSVC experiments was not conducted. In addition, as previously mentioned, the strategy employed 
was not deemed to be in compliance with ASHRAE 62.2-2016 from a RE perspective, and therefore energy 
savings is not representative. Instead, data analysis focused on indoor environmental parameters (discussed in 
the next section) and energy simulations for compliant strategies were conducted utilizing EnergyGauge USA 
to estimate energy savings. 
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Energy simulations were configured to utilize a realistic and representative occupancy schedule compiled with 
away data from over 100,000 Nest Learning Thermostats, each with one year’s worth of data. Nest Labs 
provided the results, which yielded a median value of 1,226 unoccupied hours per year. The median home had 
10–12 days that were full day away, with balance of hours being part time away. Part time away was found to 
peak at 9 a.m.–2 p.m. for weekdays and 11 a.m.–3 p.m. weekends. The simulations were configured to 
maintain the same thermostat set points during occupied and unoccupied periods, and not utilize a 
setup/setback in conjunction with the occupancy controlled ventilation system. The effect of utilizing a 
thermostat setup/setback would likely affect savings, and would vary by climate according to how 
heating/cooling loads coincide with occupancy. 

An energy model of the test home was configured to utilize this occupancy schedule, and heating and cooling 
energy use differences among continuous mechanical ventilation flow of 40 cfm and varying OTSVC flows 
was simulated. The flow during occupied periods was 40 cfm regardless of the number of occupants. For the 
OTSVC case, the fan was reduced to 10 cfm when unoccupied, rather than shut off entirely. This reduction in 
flow corresponds with informal discussions taking place within the ASHRAE 62.2 committee surrounding 
changing fundamental assumption about constant pollutant emission rates while residences are occupied and 
unoccupied. Additional information on this discussion is provided in the commercialization section of this 
report.  

For the unbalanced exhaust ventilation system operating at the test home, heating and cooling energy savings 
from the modeled OTSVC are minimal, at only 28 kWh per year, or 1%. These modest savings are in part due 
to an efficient heating system, and a schedule that calls for away time to occur during the day, when heating 
loads are less than they are overnight in the heating dominated climate. Another factor affecting savings is the 
unbalanced nature of the ventilation system, which minimizes the difference in total ventilation flow between 
the occupied and unoccupied case, due to interactive effects with natural infiltration. When the simulations are 
run using a balanced ventilation system (with no heat recovery), the amount of total air exchange increases for 
each case and the difference in air exchange between the two cases increases. This has a substantial effect on 
results, with the balanced case generating heating and cooling energy savings 10 times greater than the 
unbalanced case at 289 kWh/y. 

2.2.3 Indoor Air Quality – RH, CO2, and VOC 
Indoor humidity levels were measured in the main living area and master bedroom, and guest bedroom. All 
RH levels were typically between 40% and 60% except for a small number of hours below 40%. This suggests 
that RH is staying at comfortable levels in the house. There is little difference in the RH for the continuous and 
OTSVC modes during the ten bi-weekly flip flop tests periods. The moisture balanced technique described in 
the STSVC section was utilized to analyze data obtained during the OTSVC experimentation. The method 
compares the indoor vapor pressure (which is temperature-independent) to the vapor pressure outdoors over a 
range of outdoor temperatures. The method involves preforming a linear regression on the data between 68°F 
and 32°F and forcing the regression through zero at 68°F. The value at the 32°F intercept is the vapor pressure 
excess value used to characterize the home.  

The regression analysis found that with the OTSVC, the average vapor pressure excess was 501 Pa; for 
continuous ventilation, the average vapor pressure excess was 426 Pa. This means that, with occupancy-based 
ventilation, the house was wetter by an average of about 75 Pa. Qualitatively, the direction of this change is as 
expected. The fact that the home was wetter during OTSVC does not imply that the house was too wet during 
that mode. In this home, these values in either mode do not represent a situation where IAQ and or/durability 
issues could arise from mold etc.  

Statistical analysis was conducted on CO2 and VOC data from the downstairs zone using standard T-tests to 
determine differences in concentrations among the continuous and OTSVC ventilation schemes. The analysis 
was conducted on two different bases: 1) simple timer control—comparing all data obtained during continuous 
ventilation periods and OTSVC periods, including hours with imperfect occupancy control, i.e., ventilation 
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operating during unoccupied periods and no ventilation operating during occupied periods and 2) occupancy 
sensor control—utilizing the data from the occupancy sensors to screen data for perfect occupancy control, i.e., 
using only occupied periods when the ventilation is operating or unoccupied periods when no ventilation is 
operating. For this case, downstairs was deemed occupied if occupancy was sensed by occupancy sensors in 
either the kitchen or the entryway over a given hour. Results using all data “timer control” and those screened 
for perfect control “occupancy sensor control” are presented in Table 2-7. The t-statistics indicates significant 
correlations at the 95% level relating ventilation scheme to CO2 concentration for both cases, where OTSVC 
correlates with higher average concentrations. Differences in concentrations of VOCs between schemes were 
not significant for either case. While this experiment only provides limited data, the results from this single 
home indicate the possibility that there may not be a large difference in resulting RE between perfect 
occupancy detection and a time-clock approach. 

Table 2-7. Statistical Results for Differences in CO2 and VOC Concentrations in Main Living Area Between Continuous 
Ventilation and Two Types of OTSVC 

OTSVC 
Scheme 

CO2 VOC 
Concentration (PPM) 

t-
value 

p-
value 

  
n 

Concentration (PPM) 

t-value 
p-

value 

 
n Continuous 

Vent OTSVC 
Continuous 

Vent OTSVC 
 

Timer Control 659  759 (13.7) -  2,645  838  855  (1.3) 0.202 2,509 
Occupancy 

Sensor 
Control 682  769 -8.9 0  1,451  849  875  -1.4 0.2 1,387 
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3 Multi-Variable Smart Ventilation Control: Real-Time 
Weather-Based Smart Ventilation Control Algorithm 
Development and Laboratory Home Investigation in 
Climate Zone 2a 

A smart ventilation algorithm was developed by FSEC as part of this project, which takes advantage of the 
time varying ventilation procedure allowable by ASHRAE Standard 62.2-2016 Appendix C. As stated in the 
Introduction Section of this report, rather than a constant ventilation rate, the procedure allows varying 
ventilation rates that achieve acceptable acute and chronic RE for the indoor occupant. Given that the 
ventilation rate may vary, the algorithm takes advantage of the fact that the temperature outdoors and the 
absolute moisture of the air (absolute humidity [W]) varies over a seasonal and sometimes daily cycle relative 
to the desired indoor conditions. The algorithm can be tuned to achieve RE on an annual basis while 
minimizing hourly sensible and latent loads by modulating fan flow. 

In all locations, optimizing ventilation against outdoor temperature deviation from preferred indoor 
temperatures is desirable. However, in Central Florida as well as other humid locations, outdoor moisture 
levels are a legitimate concern for ventilation since ambient air dewpoints are frequently above 70°F, which 
represents heavily moisture-laden air that may result in uncomfortable indoor conditions during much of the 
time unless appropriately controlled. Also, although not well known, outdoor air moisture levels often vary 
with time of day. In humid Florida for instance, outdoor W is typically highest in the morning hours when 
ground dew is being driven off by solar radiation. The evaluation of the smart ventilation algorithm includes 
two phases with varied schemes related to optimizing energy savings and comfort. There may be other 
constraints to ventilation that could be optimized by a multi-parameter optimization approach. For instance, 
utilities are very concerned with minimizing HVAC loads during system generation peaks that often come in 
late afternoon in summer and early morning hours in winter. 

3.1 Algorithm Description 
Mathematically, the calculation examines the preceding 24-hour period and compares the recursively weighted 
hours with the current hour and seeks to minimize the sum of the square deviations from multiple targets: 
difference between indoor and outdoor temperature and difference between indoor and outdoor W. Other 
parameters can be added as needed, such as whether the current hour is a utility peak period, along with 
appropriate weights (X) for each to help optimize flows. 

𝑅𝑅𝑅𝑅𝑅𝑅 = �(∆𝑇𝑇 ∗ 𝑋𝑋𝑇𝑇)2 + (∆𝑊𝑊 ∗ 𝑋𝑋𝑊𝑊)2 
Where: 

ΔT (°F) = (indoor temperature) – (outdoor temperature) 

XT = delta temperature weight 

ΔW (g/m3) = (indoor moisture) – (outdoor moisture) 

XW = delta moisture weight 

The time weighted RSS (Average (RSS1:RSS23)/RSS24) becomes a multiplier to adjust total ventilation flow 
(mechanical + natural), which is proportional to RE.  

In Figure 3-1 we show how outdoor W varies over the 24-hour cycle in Orlando, Florida, as evident from 
evaluating TMY3 data for the Central Florida summer from May 1–Sept. 30. Note that W (green) is high in the 
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early morning with the dew burn off. The mean root sum square (orange) is the average root of the sum of 
squares of ΔT and ΔW. With moisture given twice the weight of temperature, the estimation shows that on 
average any time between 6 a.m. and 4 p.m. (standard time) in Orlando is a poor time to be ventilating, both 
with respect to temperature and moisture; the best time is 7 p.m. to 2 a.m. 

 
Figure 3-1. Illustration of how outdoor absolute moisture (W: green) and root mean sum squared of both temperature and 

W deviations (orange) vary over the day in summer in Orlando, Florida 

However, the best time to ventilate will vary with each day depending on how weather conditions change. The 
dynamic FSEC algorithm seeks to takes advantage of this dynamically changing weather. Obviously, indicated 
ventilation rates would differ dramatically in different places and with varying weights (likely less weight to 
delta-W would be appropriate in non-humid climates). For example, we conducted similar calculations for 
Phoenix and the model greatly prefers ventilating at night rather than during the day—no surprise given the 
high daytime temperatures there in summer. Even without the weight changed for W, the model wants to 
ventilate more when it is more humid outside as the outdoors is generally too dry. However, the Phoenix 
example also shows another interesting facet: ventilating more at night in the shoulder months will likely 
reduce cooling needs. 

Figure 3-2 shows the impact of dynamically calculating an optimum ventilation rate for each hour of the year 
using TMY3 weather data for central Florida, while targeting an annual average RE of 1. For this example, the 
RSS algorithm inputs included weights of 1 for both delta-T and delta-W, and an hourly fan flow target of 76 
cfm (the continuous fan flow requirement of ASHRAE 62.2-2016 for this example), by which the RSS is 
multiplied. (Complete algorithm inputs are described in the next section.) The figure shows how the hourly 
flow varies over the year, driven by outdoor temperature and moisture, with lower flows in the summer and 
greater flows at milder times of the year.  
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Figure 3-2. Comparison of the simulated flow rate in cfm of smart controller (green circles) versus a constant ventilation 
rate of 76 cfm (horizontal blue line). The two dashed vertical lines show the conditions from May 1–Sept. 30 during the 

height of the cooling season in Central Florida. 

We were further able to experiment with both backward and backward/forward differencing schemes in 
performing the control. The backward/forward differencing scheme assessed 24 hours of weather data in both 
directions and was evaluated by imagining that the future weather forecasts, (perhaps made available via 
broadband weather forecast) in terms of coming temperatures and dew points, were perfect. To evaluate the 
differences between backward and backward/forward differencing, a comparison between the two was 
conducted using TMY3 weather data. This is done by looking 24 hours backward into the TMY3 weather file 
and using that to compute the current hour ventilation rate, as compared to using last 24 hours and the future 
24 hours in the TMY3 weather file. This exercise was also conducted with backward and forward time periods 
up to one week. Surprisingly, they show similar performance—likely due to the slow change in weather 
patterns and that an algorithm that looks back 24 hours continuously quickly catches up with changes to 
current weather. Similar results were found for Phoenix and Chicago as well, leading to the conclusion that the 
seasonal shape of the typical or average daily weather pattern is likely more predictive of potential variable 
ventilation savings than are short term periods of hot or cold conditions. Therefore, to enhance potential for 
savings, seasonal adjustment factors were determined iteratively to ensure the RE target is achieved. The 
adjustment factors considered include changes to the target ventilation flow and flow overrides based on 
outdoor temperature and moisture, which are described below.  

Total ventilation flow (mechanical + natural) was initially utilized as the target, because it is inversely 
proportional to RE. But ultimately mechanical ventilation fan flow was used as the target. In a climate such as 
Central Florida, relatively weak driving forces provide only limited natural infiltration in the tight experimental 
buildings. Also, use of fan flow prevented maximum total ventilation from being limited when approaching 
flow capacity limits of the fan. By capping the algorithm’s output at maximum fan flow rather than maximum 
total flow, this enabled any natural infiltration occurring at that time to be counted, with consideration given to 
interactive effects with the proposed unbalanced experimental ventilation system (discussed in detail in a later 
section). Parametric simulations allow for fine tuning of the adjustment factors to achieve a predicted annual 
average RE of 1 (based on TMY3) data, even with use of the fan flow target.  
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Hourly Fan Flow = (Target Fan Flow * (Average (RSS1:RSS23)/RSS24) 

Where flow targets can vary as follows:  

• Target fan flow: 

o Cooling period target if hourly outdoor temperature > given threshold 

o Heating period target if hourly outdoor temperature < given threshold  

o Floating period target if hourly outdoor temperature is in between cooling and heating thresholds 

• Target fan flow optional adjustment: 

o If outdoor moisture > given threshold 

With the following overrides: 

• If hourly fan flow > maximum fan flow capacity, hourly fan flow = maximum fan flow capacity 

• If outdoor temperature > some given maximum, hourly fan flow = 0 

FSEC developed a simulation tool and conducted experiments in side-by-side laboratory homes in 2016–2017 
to investigate heating and cooling energy savings and resulting indoor conditions with optimized algorithms 
utilizing differing combinations of these seasonal adjustment factors. 

3.2 Phase I Scheme Description and Simulation Results 
The simulation tool was used to test integrative schemes of the smart ventilation algorithm, including 
adjustments to period flow targets and temperature parameters for the evaluation of RE, fan flow, total flow, 
potential sensible and latent ventilation load savings. Parametric simulations were conducted to determine an 
optimum scheme, to later be implemented in the laboratory. The Phase I scheme input values included a 
cooling period fan flow target of 55 cfm, heating period fan flow target of 75 cfm, and floating period fan flow 
target of 138 cfm (the maximum capacity achieved with the Phase I fan). The logic for the chosen flow targets 
for Phase I were cooling energy savings focused: the maximum flow target during the floating season was set, 
assigned the ASHRAE 62.2.-2016 continuous fan flow value for Florida’s limited heating season target, and 
dropped the cooling season target below the heating season target by 20 cfm. The delta-T term in the algorithm 
was weighted at 2, while the delta-W term in the algorithm was weighted at 1. Simulation runs showed delta-T 
to be much more impactful on energy savings. A complete list of the Phase I scheme parameters, including the 
outdoor temperature ranges defining the varying flow periods, are listed in Table 3-1. 
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Table 3-1. Phase I Scheme Values 

Period (defined 
by hourly outdoor 

Temp.) 

Parameter Phase I Scheme 
Values 

Cooling Outdoor temp. range for cooling period target >71.5°F 
Cooling period target fan flow 55 cfm 

Outdoor temp. range for fan override (0 cfm) n/a 
Heating Outdoor temp. range for heating period target <60°F 

Heating period target fan flow 75 cfm 
Floating Outdoor temp. range for floating period target <=71.5°F; >=60°F 

Floating period target fan flow 138 cfm (fan limit) 
Outdoor W range to adjust floating period target n/a 

Floating period target adjusted for W n/a 
All Indoor temp. 64.4°F 

Delta-temp. weight (XT) 2 
Indoor moisture (W) 

Delta-moisture weight (WW) 
12 g/m3 

1 
 

The indoor temperature target is set intentionally below a typical thermostat set point temperature as 
simulations showed such a low value required to generate algorithm response that would result in cooling 
energy savings. The indoor W target of 12 g/m3 corresponds to an RH of 55% at 75°F. 

3.2.1 Phase I Simulation Results 
Simulation results for the smart ventilation scheme chosen for Phase I, assuming TMY3 Orlando weather data, 
resulted in an average annual fan flow of 79 cfm, slightly higher than the ASHRAE 62.2-2016 Standard 
continuous fan flow requirement of 75 cfm. Hourly fan flow ranged from 17 cfm to the upper-limit of what the 
laboratory fan could deliver, 138 cfm. Total annual average ventilation rate was 80 cfm, determined hourly by 
adding the modified natural infiltration to the fan component.3 Annual RE averaged 1.08, reaching a maximum 
of 2.09 for a single hour, well below the 5.00 threshold provided by the ASHRAE standard. While the average 
annual exposure is slightly higher than the desired 1.00, a compromise was struck to hedge against a design 
that might generate excessive internal moisture. The simulation results are displayed graphically in Figure 3-3. 
Hourly fan flow of the smart ventilation system is plotted in light blue with average daily RE in red. The black 
line represents the ASHRAE Standard 62.2-2016 constant fan flow recommended for the laboratory buildings 
at 75 cfm and the associated RE of 1.00.  

                                                      

3 ASHRAE Standard 62.2-2016 Appendix C, formulas C7 & C8 for unbalanced mechanical ventilation (ASHRAE 2016). 
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Figure 3-3. Phase I smart ventilation scheme simulated fan flow and RE  

The plot demonstrates essentially two dominant seasons (based on the seasonal targets applied): cooling and 
floating. The smart ventilation scheme has a dynamic response, especially from mid-October through May 
when the fan is frequently flowing at its maximum when exterior conditions are ideal, often at night. During 
this floating period, average daily RE hovers near or just below 1.00. The aggressive floating period ventilation 
rate accommodates the restricted cooling period ventilation, balancing out the annual average RE, with the 
ultimate goal of generating space conditioning energy savings, especially during the cooling season in 
Florida’s challenging summer climate. 

Simulated seasonal differences in sensible and latent ventilation load between the constant, or fixed fan and 
this smart ventilation scheme are presented in Table 3-2. The table segments results into four seasons, or 
periods:  

1. Summer: The period between May 1 and October 31, 2017, which is comprised almost exclusively of 
cooling and floating hours. 

2. Non-Summer Cooling: The hours outside of the summer period when the outdoor air temperature 
exceeds 71.5°F. 

3. Non-Summer Floating: The hours outside the summer period when the outdoor air temperature falls 
below the set parameter for cooling and is at least 50°F. 

4. Heating: The hours when the outdoor air temperature falls below 50°F. 

Compared to a fixed fan, the simulation suggests that on an hourly average, the smart ventilation scheme 
delivers 0.20 kBtu less heat (reducing cooling load) and 0.31 lb less moisture to the building in summer, and 
0.10 kBtu less heat (reducing cooling load) and 0.16 lb less moisture to the building during the remaining 
cooling hours. On average, more heat is also being removed during the non-summer floating hours as well, 
which is beneficial in the hot humid climate and could act to further reduce cooling hours later in the day by 
pre-cooling the building. However, during these hours more moisture is being introduced on average by the 
smart ventilation system (0.12 lb/h) than with the constant fan (-0.06 lb/h). Although these numbers are small, 
on average, the smart scheme had a negative impact on indoor moisture, which is something the Phase II 
scheme attempts to address. Negative numbers in the table represent heat or moisture leaving the building, 
positive numbers represent heat entering the building. During heating hours, the smart ventilation scheme 
removes 0.55 kBtu/h less heat (reducing heating load) and removes 0.46 lb/h less moisture. 
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Table 3-2. Hourly Average Phase I Simulated Seasonal Sensible and Latent Loads, and Fan Energy for the Constant Flow 
(Fixed) Versus Smart Ventilation  

a The period between May 1 and Oct. 31. 
b The hours outside of the summer period when the outdoor air temperature falls within set parameters – 
Cooling >71.5°F; Floating ≤71.5°F, ≥50°F. 
c The hours when the outdoor air temperature falls below 50°F. 
 
The changes in loads were converted to energy savings in kWh and are shown in Table 3-3. These results 
assume a cooling and heating system with efficiency of seasonal energy efficiency ratio 13/COP 1 (as was 
present in the laboratory buildings during experimentation), 75% sensible heat ratio, and a 20% distribution 
loss. We implicitly assume that half of the differences in latent loads show up as increased load on the air-
conditioning system and the other half ends up as the observed changes to interior RH that were observed 
experimentally. This approximation is verified by the increase in condensate seen in the experiments as well as 
the modest changes in interior moisture level. The effect of latent loads on air conditioner electricity ends up 
similar in magnitude to the sensible changes seen. The change in sensible load during floating hours can be 
ignored, as this period is defined as hours when the outdoor temperature suggests the building should not be 
heating or cooling. 

Fan energy is also converted into kWh and summed annually in the Table 3-3. The smart ventilation scheme 
saves fan energy during the cooling when flows are lower, but uses more fan energy during the heating and 
especially the floating hours when flow is more aggressive. The table shows potential for 7% annual energy 
savings, and over the 183-day period defined as summer in Central Florida (May 1–Oct. 31), the Phase I 
system is estimated to save 1.2 kWh/day versus the constant speed ventilation system.  

Season/ 
Period 

Sensible (kBtu/h) Latent (lb/h) Fan Power  
(Average Watts) 

Average 

Fixed Smart Δ Fixed Smart Δ Fixed Smart Δ 
Flow 
(cfm) 

RE 

Summera 0.25  0.05  0.20  1.88  1.57  0.31  40  28  11.62  65  1.22  
Non-Summer 

Coolingb 
       

0.14  
       

0.04  
        

0.10  
        

0.40  
        

0.24  
        

0.16  
          

40  
          

17  
      

22.59  
          

40  
       

1.30  
Non-Summer 

Floatingb 
    

(0.92) 
    

(1.33) 
        

0.41  
      

(0.06) 
        

0.12  
      

(0.18) 
          

40  
          

50  
    

(10.11) 
        

116  
       

0.76  

Heatingc 
    

(2.04) 
    

(1.50) 
      

(0.55) 
      

(1.80) 
      

(1.34) 
      

(0.46) 
          

40  
          

24  
      

16.22  
          

55  
       

1.27  

Annual           79  1.08  
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Table 3-3. Estimated Space Conditioning Energy Use and Savings for Fixed and Smart Ventilation Using Phase I Scheme 

Season/ 
Period 

Sensible (kWh) Latent (kWh) Fan (kWh) Total Savings 
Fixed Smart Savings Fixed Smart Savings Fixed Smart Savings (kWh)  % 

Summera 140 30 110 397  331  65  175  124 51  226  32 
Non-Summer 

Coolingb 20 6  15  21  13  8  
          

44  76  (31) (8) -10 
Non-Summer 

Floatingb             
        

117  
        

219  (102) 
      

(102) -87 

Heatingc 232  170  62    12  104 (91)  (29) -12 

Annual 392  206  186  418  344  74  349  522  (173) 87  7 
a The period between May 1 and Oct. 31. 
b The hours outside of the summer period when the outdoor air temperature falls within set parameters – Cooling >71.5°F; 
Floating ≤71.5°F, ≥50°F. 
c The hours when the outdoor air temperature falls below 50°F. 
 
3.3 Laboratory Setup, Control, and Data Collection 
Experimental work was conducted in FSEC’s Flexible Residential Test Facility (FRTF), which features two 
full-scale, geometrically identical side-by-side residential energy research facilities as shown in Figure 3-4. 
General characteristics of the 1,536-ft2 single-story buildings (volume = 13,050 ft3) including details of the 
general instrumentation package and schedule and methods for simulating occupancy by generating indoor 
sensible and latent loads are provided elsewhere (Parker 2014). One building acted as a control and utilized a 
fixed ventilation rate. The other building varied the ventilation rate with a variable speed fan, which was 
operated with a smart controller created as part of this task utilizing a programmable datalogger.  

 

Figure 3-4. Flexible residential test structures on FSEC campus 

Air leakage across the buildings’ envelopes is controllable; however, for these experiments both buildings 
were set to their “tight” condition, resulting in approximately 2.2 air changes per hour at 50 Pa, characterized 
with both blower door and pulse tracer gas injection prior to beginning experiments. Under the “tight” 
condition, ASHRAE 62.2-2016 requires 75 cfm of whole-house mechanical ventilation fan flow, which was 
provided to the control building continuously, on a supply basis, directly into the zone via an inline fan. The 75 
cfm is determined as the fan component of total continuous ventilation required by ASHRAE 62.2-2016, 
including natural infiltration modified by use of superposition to dictate interactive effects of the desired 
unbalanced ventilation system, as described in the standard’s Appendix C. 
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Components of the Phase I ventilation system in each home include a Fantech FR 140 centrifugal inline fan, 
illustrated in Figure 3-5, for which the maximum produced flow at full output was measured at 138 cfm once 
installed. The fan is ducted with Continental Fan 6” IRIS damper and sections of 6” round metal and flex ducts 
insulated to R6. Outside air is drawn through a 12” x 12” filter back grill into an eight-foot section of 6” flex 
duct, which in turn is connected to a 10-foot section of 6” round metal duct with the IRIS damper at the center 
and inline fan at the end of the 10-foot metal duct. Air from the fan is then supplied to the living space through 
a six-foot section of flex duct. The IRIS damper was mounted between two five-foot sections of straight metal 
duct to increase measurement accuracy. Continental Fans provides standard flow equations for each IRIS 
damper setting that are adequate for general field use. An airflow equation was determined using a TSI wind 
tunnel and monitored in real-time with IRIS damper differential pressure readings. 

 

Figure 3-5. Fantech FR140 variable speed fan used to set flow for smart ventilation system 

While the simulations were hourly-based, the experiments controlled the fan in 15-minute increments. 
Variation of airflow rates in the experimental building is achieved by altering the run time of the inline fan 
with the programmable datalogger as dictated by the smart ventilation algorithm. That is, the fan itself runs at a 
fix speed while operating, but run time is varied during each 15-minute period to match the total flow called 
for. Flow measurements are determined using digital output from the manometer and the average recorded 
each 15-minutes. Temperature and RH are measured at the entrance and exit of the ventilation duct only while 
the fan is running and averaged for each 15-minute scan period. Indoor temperature and RH measurements 
were taken near the thermostat and HVAC energy measurements were recorded. Meteorological parameters 
were taken on a 10-m tower. Outdoor temperature sensors were aspirated and shielded. 

Real-time data acquisition was accomplished with Campbell Scientific CR3000 and CR1000 dataloggers 
operating at a 10-second scan rate and storing 15-minute data. Instrumentation equipment is shown in Table 3-
4.   
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Table 3-4. FRTF Monitoring Equipment  

Measurement Equipment Accuracy 

Data acquisition Campbell Scientific CR3000 and CR1000  0.06% 

Temperature and RH at center of home 
and outdoor airstream 

Vaisala HMP60 (Thin-film, dielectric 
capacitive) 

± 0.5°C, ± 3% 
RH 

Additional room temperatures Type-T Thermocouple ±0.5oC 

Energy Continental Control Systems Wattnode 
energy meters and current transformers  

± 1% of rated 
current 

Pressure differential (outside airflow) The Energy Conservatory DG2 pressure 
gauge with analog output 

± 1% 

Airflow Continental Fans IRIS-06 damper 5% 

Building envelope air leakage 
Minneapolis Blower Door System with DG-

700 digital gauge 
3% 

 

3.4 Early Experimentation to Implement Fan Control 
Early experiments to initially investigate reductions to heating energy began in January 2016 with a less 
sophisticated set of algorithm targets and parameters. During this brief period, a target fan flow of 66 cfm was 
used, prior to implementing interactive effects of the unbalanced system in accordance with ASHRAE 62.2-
2016 Appendix C. As seen in Figure 3-6, temperature control between the buildings is very tight during 
periods of heating (set point = 73°F, to give a good heating signal during Florida’s mild winter) and floating 
(indoor temperatures exceeding 80°F). The last few days of the plot are after the labs were switched from 
heating to cooling (75°F set point). 
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Figure 3-6. Indoor temperature (°F) in labs with the baseline system (orange) and advanced system (green) 

Figure 3-7 shows that the fan control is nearly perfectly providing the ventilation that the algorithm desires 
most of the time except when the algorithm calls for flow in excess of the fan’s capacity. Shown in the plot is 
the target flow calculated by the algorithm along with the equivalent continuous flow delivered to the building. 
Again, the laboratory fan operates with a fixed flow of 138 cfm. The variation in measured flow is an average 
of the run time captured in 15-minute intervals. The only discrepancies are when the outdoor temperatures are 
mild, the algorithm wishes the fan to deliver a lot more ventilation than it is physically capable of, with a 
maximum flowrate of 138 cfm. These spikes in the algorithm’s desired flow are particularly large (exceeding 
the plots axis maximum several times and over 1,000 cfm at one point) when ideal outdoor conditions follow a 
trend of unfavorable conditions.  
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Figure 3-7. Hourly target ventilation flow (cfm) derived by the algorithm (red), measured delivered ventilation flow to the 
building (blue), and RE (green) 

Figure 3-7 also shows the movement in RE, which averaged 0.98 during this period, slightly better than the 
target annual RE of 1.00. The average flow delivered during this period was 73.1 cfm, a bit higher than the 
continuous flow target of 66 cfm. 

Figure 3-8 shows the fan run time (minutes, right axis) along with the two fundamental driving forces: outdoor 
temperature and outdoor dew point. The smart ventilation scheme generates high flows when the temperatures 
are close to 75°F4 with dew points in the 50s to 60s (March 1 and 8), but reduces flows greatly when the dew 
points are around 60°F to 70°F (March 13–15). This would seem to indicate that relaxing the target interior RH 
on which the moisture target is based from 50% to 55% would have beneficial effects on the ability of the 
temperature-driven part of the algorithm to deliver savings. Another approach would be to set the RH weight 
lower (perhaps 0.5) or vary the weight by the direction of the delta and see how much more savings can be 
produced. Each of these approaches was evaluated in later simulations to develop a Phase II ventilation 
scheme.  

                                                      

4 During this short experimental run, the target indoor temperature was set at 75°F before it was subsequently lowered for the Phase I experimental scheme 
discussed later. 
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Figure 3-8. Fifteen-minute ventilation fan run time (minutes) of the advanced system (green, right axis), along 
with the outdoor temperature (red, left axis) and outdoor dew point (blue, left axis) 

3.5 Impact of Outdoor Air Source on Ventilation Air Temperature 
One surprise finding from the early fan control experimentation was that the temperature of air being 
introduced to the center of the test home by either the smart or constant flow supply ventilation system was 
considerably warmer than the outdoor air temperature measured at height (15 ft). We knew that the supply 
ventilation fan heat would raise the temperature of the air to the interior space, and be a partial contributor to 
this effect. For instance, with 40 Watts of fan power producing 66 cfm, the added fan heat can be expected to 
raise the discharge ventilation air temperature by 1.9°F over the intake temperature. Unfortunately, the 
temperature rise of the discharge air was considerably greater than 2°F; the cause of this is described below. 
Figure 3-9 shows data for a two-week period during the height of summer. The temperatures of the intake and 
discharge are only those when the ventilation system is operating so there is no bias of non-run time 
conditions. 
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Figure 3-9. Temperature of ventilation intake (green), discharge (orange), and the outdoor temperature (blue) of the smart 
ventilation building, July 29–Aug. 10, 2016 

Averages over the period show the increase of the intake vs. ambient temperature is greatest during the 
afternoon hours, which likely comes from both gains to the 6” insulated duct system, located in the vented 
attic, as well as heating of the east wall by sunlight. Figure 3-10 reveals that the discharge temperature is fully 
5°F higher than the outdoor air temperature at height during summer afternoon, and the outdoor temperature 
and outdoor air intake were 4°F higher than the outdoor temperature taken at roof height. The averages over 
the period: ambient 80.4°F; ventilation intake 83.4°F; ventilation discharge 84.3°F. 
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Figure 3-10. Average intake (green) and discharge temperatures (orange) of smart ventilation system at the height of 
summer against outdoor air temperature at roof height (blue), July 29–Aug. 10 

To compensate for this impact during development of the Phase I scheme, the target indoor temperature was 
set 5°F cooler than would be otherwise selected, which we also conclude will be necessary for implemented 
smart ventilation strategies in cooling dominated climates. This will be particularly true when temperatures 
acquired from internet sources are used in place of local measurements, which can be expected to be biased 
low. Figure 3-11 shows how temperatures closer to the ground and near ventilation air intakes can be higher 
relative to temperatures at higher elevations where weather station data are typically collected. 

 



Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control 

 

32 

 

Figure 3-11. Example data on Aug 1, 2016 showing how air temperature varies around test buildings at height, vent inlet, 
and close to ground 

3.6 Phase I Laboratory Evaluation 
The Phase I scheme determined through simulation evaluation and described in Section 3.2 was implemented 
into the FRTF building with the smart controller, while the control building ran a constant ventilation rate of 
75 cfm, to evaluate ventilation-specific cooling load and energy savings. This scheme was run from August 
2016 through March 2017. With the mild winter experienced, this evaluation segment is nearly exclusively 
cooling and floating periods, with the thermostat in both buildings set to 74°F. 

3.6.1 Phase I Results: 2016 Cooling and 2016–17 Floating Periods  
Measured monthly energy savings for the cooling and floating periods are provided in Table 3-5, and average 
RE, fan flow, and interior and exterior conditions are shown in Table 3-6. Results have been projected into 30-
day bins, as a full month of data were rarely available for a variety of reasons, including disparities between 
the two buildings in internal gains, AC failure, complete power failure during Hurricane Matthew, and a few 
days requiring heating. 

 



Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control 

 

33 

Table 3-5. Phase I Scheme Average Monthly Measured Cooling Energy Use and Savings 

 
 

Table 3-6. Phase I Scheme Average Monthly Measured Fan Flow, RE, and Interior and Exterior Conditions  

Month (n = 
days of good 

data) 

Smart 
Flow 
(cfm) 

Smart 
RE 

Outdoor 
OA Inlet 
Temp. 
(°F) 

Control 
Indoor 

Temp. (°F) 

Smart 
Vent 

Indoor 
Temp. 
(°F) 

Outdoor Air 
Inlet Dew 

Point 

Control 
Indoor 

RH 

Smart 
Vent 

Indoor 
RH 

Aug. (n = 21) 57  1.33  84.4  73.6  73.6  75.5  52.1  51.2  

Sep. (n = 15) 59  1.31  81.5  73.6  73.9  73.5  53.1  53.9  

Oct. (n = 25) 66  1.25  76.8  74.2  74.1  65.8  50.5  50.6  

Nov. (n = 9) 82  1.08  70.3  74.0  74.1  60.0  50.9  53.3  

Dec. (n = 31) 87  1.03  69.6  73.9  73.9  61.0  54.0  56.2  

Jan. (n = 15) 82  1.06  65.3  74.3  73.9  54.0  48.3  52.8  

 

The smart ventilation algorithm delivered 36 kWh/month or 1.2 kWh/day and 5.5% cooling energy savings for 
this 180-day period. Results are improved slightly, to 6.2% when fan energy is considered. Average monthly 
savings ranged from 1% to 17%. The average monthly fan flow for the smart ventilated building gradually rose 
from 57 cfm in August to 87 cfm in December, as higher flow targets were programmed to help reduce the 
average annual RE, which ranged from 1.33 to 1.03 during these months. The smallest cooling savings were 
experienced during the hottest months when air delivered by the smart ventilation system was less than that of 
the control. During these months, the air conditioner ran nearly constantly and sometimes failed to keep the 
interior set points at 74°F. The plot in Figure 3-12 shows the AC running constantly much of the day, and at 
times failing to bring the interior temperature down to the set point. In August, the smart building with reduced 
ventilation is better able to maintain desired interior conditions (yellow) than the control (red). The control 
building temperature spikes about 2°F higher than smart building. However, cooling energy in both buildings 
is continuous for extended periods, hence there are essentially no energy use savings experienced during this 
month. 

Month Cooling Energy (kWh) Fan Energy (kWh) Total (kWh) 
(n = days of 
good data) 

Fixed Smart Savings Fixed Smart Savings Fixed Smart Savings % 
Savings 

Aug. (n = 21) 1,312  1,295 16  29  18 11  1,340  1,313  27  2% 

Sep. (n = 15) 1,011  1,013  (2) 29  18  10  1,039  1,031  8  1% 

Oct. (n = 25) 671 624  47  29   21  8  700  645  55  8% 

Nov. (n = 9) 295 246  49  29  25  3  324  271  53  16% 

Dec. (n = 31) 286 234  52  29  27  2  314  261  53  17% 

Jan. (n = 15) 300 248  53  29  25  3  329  273  56  17% 
Average 646 610  36  29  22  6  674  632  42  6.2% 
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Figure 3-12. Smart ventilation AC power (green) and control building AC power (blue) both fail to keep set point (purple). 

Control building temperature (red) spikes about 2°F higher than smart building (yellow). 

Average indoor temperature in the control and smart ventilation buildings were closely aligned overall, 
although with daily variation as noted in Figure 3-12. The smart ventilation building experienced higher indoor 
RH during the floating period when the outside airflow is at its greatest. December experiences the highest 
average interior RH for both buildings, 54.0% in the control and 56.2% in the smart. The smart building’s 
indoor RH regularly rose between 60% and 64% during morning hours, as plotted in Figure 3-13. The hours of 
elevated indoor RH follow the hours during which the smart ventilation building flow exceeds that of the 
control building. The smart building’s elevated indoor RH is in response to greater ventilation rather than a 
buildup of internally-generated moisture that is not adequately ventilated during low-flow hours.  

October is highlighted as an average month for the smart ventilation scheme with ventilation energy savings at 
7% and 47 kWh. Figure 3-14 is the average daily profile for October, displaying air conditioning power, fan 
flow, and RH for both buildings, along with outside air inlet temperature. 
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Figure 3-13. Average day smart ventilation and control building fan flow and interior RH during December 

 

 

Figure 3-14. October average daily profile, displaying smart building AC power (green line), control building AC power (blue 
line), smart fan flow (green dash), constant control fan flow (blue dash), smart building interior RH (purple dots), control 

building interior RH (orange dots), and outside air inlet temperature (red line) 
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The smart ventilation scheme fan flow increases between 11 p.m. and 9 a.m., when the outdoor temperature is 
lowest, and drops well below that of the control building during the remaining hours. However, regardless of 
the amount of flow, the smart building AC energy is consistently lower than that of the control building. 
Meanwhile, indoor RH is fairly comparable between the two buildings, with the smart ventilation building’s 
humidity slightly higher in the early morning hours, but slightly lower by mid-day. Average RE for the month 
was 1.25. 

3.6.2  Phase I Results: 2017 Heating Period 
A mild 2017 winter in Central Florida provided little data for the smart ventilation heating evaluation, offering 
only a handful of days with no cooling energy use and relatively substantial heating compared to floating 
hours. Looking at data spanning two brief cold fronts totaling 12 days found that the average fan flow for the 
smart ventilation building (88 cfm) exceeded that of the control (75 cfm), and RE was 0.95 given copious 
floating hours when the smart ventilation fan had a more aggressive flow target. Overall energy saving during 
these two cold fronts was -1%, with no savings with fan energy considered. Figure 3-15 depicts conditions 
during a January cold front, showing the outside air inlet temperature (blue), control and smart building 
ventilation flows (red and green), and the control and smart air hander energy use (purple and orange). The last 
three days of the cold front had a considerable number of floating hours. With the Phase I smart ventilation 
scheme, the mild winter generated no savings, but provided high levels of fan flow during floating hours, 
helping to balance the annual RE. 

 

Figure 3-15. Smart ventilation heating (orange) versus control building heating (purple). Smart ventilation heating savings 
observed during a January cold front. 

3.7 Phase II Scheme Description and Simulation Results 
In effort to achieve reduced RE, better energy savings, and improved indoor comfort conditions from the smart 
ventilation system, changes were made prior to the onset of the 2017 cooling season. The goal of the revised 
scheme was to reduce RE and indoor RH, while maximizing cooling energy savings. First, a more powerful 
fan (Fantech FR160 series fans) with a maximum installed flow of 209 cfm (tested in situ) was installed to 
allow greater ventilation flow during moderate outdoor conditions, and the simulation tool was revisited to test 
additional integrative schemes with added parameters. The power use of the larger fan increased from 59.4 



Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control 

 

37 

Watts to 113.8 Watts in the Phase II scheme. While it is expected that this increase in fan energy will 
negatively impact overall savings, the primary intent of the experiments are to investigate impact of ventilation 
flow modulation. In practice, fan energy use will need to be optimized, and relative impact will ultimately 
depend on the baseline system chosen for comparison. Based on 2016 experiences, ventilation during the 
hottest periods with a limited cooling system capacity led to elevated interior temperatures that would likely 
not be considered favorable in a functional ventilation system. Thus, a key evaluated parameter included a fan 
override (flow lockout) above a specified outdoor air temperature. Scheme alterations included a variety of 
methods to reduce indoor RH, including altering delta-T and delta-W weights. Ultimately, the simulation 
suggested the best reductions in indoor RH while maintaining savings and an annual RE of 1.00 was to create a 
second floating period fan flow target when outdoor conditions rose above a specified amount of outdoor 
moisture.  

The chosen Phase II scheme input values include cooling and heating period flow targets of 75 cfm, and a 
floating period target of 209 cfm; a fan override to stop fan flow when inlet air temperatures exceed 88°F; a 
threshold for lowing floating period fan flow from 209 to 75 cfm when outdoor moisture reaches 15g/m3, and 
the definition of a heating hour was redefined as <50°F outdoor temperature. A complete list of the Phase II 
scheme parameters, including the outdoor temperature ranges defining the varying flow periods is shown 
adjacent to the Phase I scheme in Table 3-7. 

Given the lessons learned about the impact of outdoor air source on the ventilation air temperature, the 
algorithm was modified to trigger a fan override and reduce fan flow to 0 cfm when the TMY3 reaches 84°F 
and the inlet air temperature is assumed to be TMY3 +4°F, or 88°F. This was implemented to true-up the 
simulation with the laboratory experience described in Section 3.5. For the laboratory implementation, the fan 
is shut off when the outdoor air inlet temperature reaches 88°F. 

Table 3-7. Phase I versus Phase II Scheme Values 

Period 
(defined by 
hourly avg. 

outdoor 
Temp.) 

Parameter Phase I Scheme 
Values 

Phase II Scheme 
Values 

Cooling Outdoor temp. range for cooling period target >71.5°F >71.5°F 
Cooling period target fan flow 55 cfm 75 cfm 

Outdoor temp. range for fan override (0 cfm) n/a >=88°F 
Heating Outdoor temp. range for heating period target <60°F <50°F 

Heating period target fan flow 75 cfm 75 cfm 
Floating Outdoor temp. range for floating period target <=71.5°F; >=60°F <=71.5°F; >=50°F 

Floating period target fan flow 138 cfm (fan limit) 209 cfm (fan limit) 
Outdoor W range to adjust floating period 

target 
n/a >=15g/m3 

Floating period target adjusted for W n/a 75 cfm 
All Indoor temp. (T) 64.4°F 64.4°F 

Delta-temp. weight (XT) 2 2 
Indoor moisture (W) 

Delta-moisture weight (XW) 
12 g/m3 

1 
12 g/m3 

1 
 

3.7.1 Phase II Simulation Results 
Simulation results for the Phase II smart ventilation scheme with TMY3 Orlando weather data suggested 96 
cfm average annual fan flow, an increase from that of the Phase I smart ventilation scheme of 79 cfm. Total 
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annual ventilation averaged 98 cfm.5 Along with the increased flow, results suggested an improved annual RE, 
which averaged 1.01 and reached a maximum of 3.63 for a single hour, still below the 5.00 threshold 
suggested by ASHRAE 62.2-2016. This compares with the Phase I simulation results of 1.08 and 2.09 for 
annual average and maximum RE, respectively. 

Phase II Scheme simulation results are displayed graphically in Figure 3-16 with hourly fan flow of the smart 
ventilation plotted in light blue and average daily RE in red. The black line represents the alternative 
continuous fan flow at 75 cfm and associated RE of 1.00. 

 

Figure 3-16. Phase II smart ventilation scheme simulated fan flow and RE  

One difference between this simulation and the Phase I version is that during the floating period, RE is more 
frequently below 1.00. However, a more notable difference is that during the summer season (May through 
October), the fan is frequently shut off. Figure 3-17 magnifies results for August, which illustrates the diurnal 
fan cycling and that the 88°F fan cutoff as being implemented almost daily during this hot summer month. 

 

Figure 3-17. Phase II smart ventilation scheme simulated fan flow and RE for month of August  

Simulated seasonal differences in the sensible and latent ventilation loads between the constant fan and the 
Phase II smart ventilation scheme are presented in Table 3-8. This simulation suggests the revised smart 
ventilation scheme reduces sensible cooling load by 0.33 kBtu/h and moisture load by 0.08 lb/h during the 
summer, and by 0.12 kBtu/h and 0.09 lb/h, respectively, during the remaining non-summer cooling hours. The 
Phase II simulation also shows 0.55 kBtu/h less sensible heat removed during the heating period (reducing 
heating load) while more heat is removed during the floating period. While Phase II scheme does result in 
                                                      

5 This includes the addition of the modified natural infiltration to the fan component, according to the ASHRAE Standard 62.2-2016 Appendix C, formulas 
C7 & C8 for unbalanced mechanical ventilation (ASHRAE 2016). 
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moisture removal during the floating period (unlike Phase I that showed moisture addition), it is still simulated 
to be less moisture removal on average than the fixed scheme. 

Table 3-8. Hourly Average Phase II Simulated Seasonal Sensible and Latent Loads, and Fan Energy for the Constant Flow 
(Fixed) Versus Smart Ventilation  

a The period between May 1 and Oct. 31. 
b The hours outside of the summer period when the outdoor air temperature falls within set parameters – Cooling >71.5°F; 
Floating ≤71.5°F, ≥50°F. 
c The hours when the outdoor air temperature falls below 50°F. 
 
The changes in ventilation loads are converted into kWh using the same procedure as described for Phase I and 
shown in Table 3-9 along with fan energy. 

Table 3-9. Estimated Space Conditioning Energy Use and Savings for Phase II Scheme  

Season/ 
Period 

Sensible (kWh) Latent (kWh) Fan (kWh) Total Savings 
Fixed Smart Savings Fixed Smart Savings Fixed Smart Savings (kWh)  % 

Summera 140   (46) 186  397  380  17  175  181   (6) 196  28 
Non-Summer 

Coolingb 20  3  17  21  16  5  44  123  (78)  (56) -65 
Non-Summer 

Floatingb             117  352   (235) 
 

(235) -200 
Heatingc 232  170  62     12  131  (119)  (57) -23 

Annual 
        

392  
        

128          264  
        

418  
        

396  22 
        

349  
        

787  
      

(438) 
      

(152) -13 
a The period between May 1 and Oct. 31. 
b The hours outside of the summer period when the outdoor air temperature falls within set parameters – Cooling >71.5°F; 
Floating ≤71.5°F, ≥50°F. 
c The hours when the outdoor air temperature falls below 50°F. 
 
Floating period sensible load can again be ignored, as described in the Phase I discussion. Summer sensible 
savings are 190 kWh—an increase over the Phase I arrangement. The largest change in the Phase II 
arrangement is the increase in fan power, which has a deleterious impact on annual simulated savings although 
the impact on RE is considerably improved. The negative impact of increased fan power on the savings of the 
scheme suggests that the use of permanent magnet motors with much lower power would be highly beneficial 
to both the ability to modulate flow over periods, rather than utilize a fixed fan speed for varying amounts of 
time, as well as to reduce fan electric power consumption. 

Season/ 
Period 

Sensible (kBtu/h) Latent (lb/h) Fan Power  
(Average Watts) 

Average 
 

Fixed Smart Δ Fixed Smart Δ Fixed Smart Δ 
Flow 
(cfm) 

RE 

Summera 
       

0.25  
    

(0.08) 
       

0.33  
       

1.88  
       

1.80  
       

0.08  
          

40  
          

41  
    

(1.38) 
          

76  
       

1.19  
Non-Summer 

Coolingb 
       

0.14  
       

0.02  
       

0.12  
       

0.40  
       

0.30  
       

0.09  
          

40  
          

28  
    

11.88  
          

51  
       

1.15  
Non-Summer 

Floatingb 
    

(0.92) 
    

(1.72) 
       

0.80  
    

(0.06) 
    

(0.02) 
    

(0.05) 
          

40  
          

80  
  

(40.46) 
        

147  
       

0.66  

Heatingc 
    

(2.04) 
    

(1.50) 
    

(0.55) 
    

(1.80) 
    

(1.34) 
    

(0.46) 
          

40  
          

30  
       

9.97  
          

55  
       

1.25  

Annual                   
          

96  
       

1.01  
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3.8 Phase II Laboratory Results: 2017 Cooling Period 
The Phase II scheme was implemented into the FRTF smart-controlled building May 1, 2017. The thermostats 
in both buildings were raised 2°F to 77°F since both mechanical systems had trouble meeting load demands 
during the hottest summer days in Phase I. The adjusted set points will allow the mechanical capacity for both 
laboratories to better meet demand during these warmest hours. Measured monthly energy savings are 
provided in Table 3-10, and average fan flow, RE, and interior and exterior conditions in Table 3-11. Results 
have been projected into 30-day bins, as a full month of data were not available because of internal gains 
issues—either disparities between the two buildings or limited generation in both. 

Table 3-10. Phase II Scheme Average Monthly Measured Smart Ventilation AC Savings 

 

Table 3-11. Phase II Scheme Average Monthly Measured Fan Flow, RE, and Interior and Exterior Conditions 

Month (n = 
days of good 

data) 

Smart 
Flow 
(cfm) 

Smart 
RE 

Outdoor OA 
Inlet Temp. 

(°F) 

Control 
Indoor 

Temp. (°F) 

Smart Vent 
Indoor 

Temp. (°F) 

Outdoor Air 
Inlet Dew 
Point (°F) 

Control 
Indoor 

RH 

Smart Vent 
Indoor RH 

May (n=22) 91 0.99 76.4 76 75.9 39.6 49.1 50.4 

Jun (n=22) 71 1.10 80.3 76 76.2 60.0 52.3 52.4 

Jul (n = 26) 67 1.27 83.0 76 76.1 61.3 49.0 49.3 

 

Although the results are limited to three months, the smart ventilation algorithm with the modified scheme and 
more powerful fan delivered savings far superior to the prior scheme, generating measured 12.4% AC savings 
in May (89 kWh/month, 3.0 kWh/day), 8.8% in June (73 kWh/month, 2.4 kWh/day), and 8.7% in July (88 
kWh/month, 2.9 kWh/day), averaging 9.8% AC savings for the total period. Factoring in fan energy use, the 
savings are reduced slightly to 9.6% (84 kWh/month, 2.8 kWh/day). While the months of measured data varied 
between phases, the cooling energy saving for three months under the Phase II scheme averaged 9.6%, 
whereas the average cooling energy savings for three months under Phase I was only 2.9%. These savings are 
compared in Figure 3-18. 

Month Cooling Energy (kWh) Fan Energy (kWh) Total Energy (kWh) 
(n = days of 
good data) 

Fixed Smart Savings Fixed Smart Savings Fixed Smart Savings % 
Savings 

May (n=22)  719   630   89   29   36   (7)  748   666   82  11.0% 
Jun (n=22) 822  749  73   29   20   8  851  770  81  9.5% 
Jul (n = 26) 1,012  924  88  29  26  2  1,040  950  90  8.6% 

Average 851  768  83  29  27  1  880  795  84  9.6% 
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Figure 3-18. Average measured HVAC savings for Phase I (August–October) versus Phase II (May–July) 

The average monthly fan flow for the smart ventilated building in May was 91 cfm, exceeding the constant 
fixed flow of 74, and average RE was 0.99. Average flow during June was reduced to 71 cfm in response to 
warmer conditions and the average RE rose to 1.10. Average flow during July was reduced slightly further to 
67 cfm and the average RE rose to 1.27. Average indoor temperature in the control and smart ventilation 
buildings are closely aligned. The average indoor RH in May was slightly higher in the smart building than the 
control, but overall the RH in the smart ventilation building was more closely aligned with that in the constant 
flow building than it was in Phase I. Still, floating season, when the RH difference between the buildings was 
greatest during Phase I, has yet to be analyzed. Similarly, a full year of data would be needed to evaluate how 
well the Phase II scheme actually succeeded in attaining the ASHRAE 62.2-2016 RE target, which was 
achieved using synthetic data. 

The average daily profile for June is highlighted in Figure 3-19, with ventilation scheme savings at 11.3%, 
displaying air conditioning power, fan flow, and indoor RH for both buildings along with outside air inlet 
temperature. The increased fan flow in the smart ventilation building during the morning hours has little 
impact on RH while still achieving impressive energy savings. The AC energy savings of the smart ventilation 
scheme are more pronounced during midday, when the outdoor temperature rises and the smart fan flow is 
greatly reduced. 
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Figure 3-19. June average daily profile, displaying smart building AC power (green line), control building AC power (blue 
line), smart fan flow (light green dash), constant control fan flow (light blue dash), smart building interior RH (purple dots), 

control building interior RH (orange dots), and outside air inlet temperature (red line). 
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4 Conclusions from Experimental and Simulation-Based 
Analysis of Smart Ventilation Performance 

Three approaches to smart ventilation control were investigated as part of the research described in this report, 
utilizing a combination of energy simulation and experimental approaches. Differing numbers and types of 
control variables were explored, and implemented for demonstration purposes with varying levels of 
sophistication. Some controls were simple, while others were quite complex. In all cases, simulations and 
experiments showed potential to achieve heating and cooling energy savings, while maintaining indoor 
comfort. All control strategies, except for OTSVC, showed the ability to achieve objectives while maintaining 
RE to continuous ventilation specified in ASHRAE 62.2-2016. The OTSVC case is unique in that it explored 
RE with a different fundamental assumption for how pollutant emission rate may vary with occupancy, as 
discussed in the next section.  

Experimental testing utilized sensor-based measurements of occupancy and weather parameters collected at 
the actual test homes, but commercialized systems could leverage both broadband weather data available from 
internet connected devices such as smart thermostats, as well as occupied/unoccupied signals from internet-
connected security systems, thermostats, etc. One lesson learned is that differing choices for the physical 
location of a weather sensor to be located at a home could have an effect on resulting ventilation system 
operation, but also may more accurately reflect actual ventilation air conditions than data from an airport 
weather station. If broadband weather data is used as an element of control, algorithms may need to be tuned to 
correct for local anomalies.  

Seasonal Temperature-Based Smart Ventilation Control (STSVC): A low-cost, prototype STSVC that shut off 
the mechanical ventilation fan below a pre-determined outdoor temperature (57°F) was implemented in an 
occupied existing home in the heating dominated, marine climate zone of Olympia, Washington. In order to 
achieve an equivalent RE to continuous ventilation, above 57°F, the fan operated at more than two times the 
rate determined by ASHRAE 62.2-2016 for continuous ventilation. While this arrangement kept the fan off for 
much of the winter, natural infiltration during periods of high indoor to outdoor temperature difference was 
modeled as sufficient to prevent unacceptable acute exposure to target pollutants. Simulation results show 
hourly RE remains below 1.5 and an annual average RE of 0.84.  

Energy simulations indicated potential for 9% heating and cooling savings for the STSVC approach vs. 
continuous mechanical ventilation, and analysis of monitored data showed no negative impact on indoor 
moisture. Analysis of monitored data also showed that while indoor CO2 concentration was slightly higher on 
average with the STSVC approach compared to the continuous ventilation approach, other factors such as 
occupancy, air mixing, and changes to air exchange via window opening affect indoor CO2 concentration in 
similar proportion. Further study regarding other contaminants, particularly during long fan-off periods, is 
warranted. An evaluation of indoor RH showed that comfortable conditions are being maintained. An analysis 
of absolute moisture found that only minor differences exist between the continuous and STSVC schemes and 
health and durability are not impacted.  

An investigation into the operation of the $20 fan controller used for the experiment found the controller 
worked as expected, though leads to a suggestion for fan manufactures to evaluate a slightly longer delay 
period on the controller to reduce occurrences of fan cycling within the 1-minute time step.  

Occupancy Timer-Based Smart Ventilation Control (OTSVC): In the same Olympia, Washington, occupied 
residence, an OTSVC system that varied operation of a mechanical ventilation fan in response to whether the 
home was occupied or vacant was tested. The simple, and low-cost time clock control assumed no occupancy 
during a typical workday schedule, seven days each week, where the mechanical ventilation fan was not 
operated. The scheme is not compliant with the ASHRAE 62.2-2016 standard, but was tested to evaluate 
control implications related to accuracy of occupancy detection. The imperfect control resulted in periods of 
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time when the ventilation system was operating during unoccupied periods, and vice versa. To examine effects 
of imperfect control, actual occupancy was tracked with sensors and logs. Monitored data and subsequent 
analysis determined that indoor conditions were wetter during OTSVC with less ventilation air creating less 
drying potential, but not so wet as to degrade comfort, IAQ or durability. Monitored CO2 data showed that the 
average concentrations maintained during continuous ventilation (659 ppm) were lower than OTSVC (759 
ppm). Differences in monitored VOC concentrations between schemes were not significant. Findings were 
similar when more perfect occupancy detection was simulated by filtering data for ventilated unoccupied 
records and non-ventilated occupied periods. An evaluation on absolute moisture suggests that the OTSVC 
scheme would not generate mold-related IAQ or durability issues.  

Energy simulations to estimate heating and cooling energy savings from OTSVC show a range of potential 
savings that can vary by a factor of 10 or more, yielding as much as 289 kWh/year savings, depending on a 
number of factors including climate, occupancy schedule, how the schedule corresponds with heating/cooling 
loads, and the amount of ventilation air reduction provided by the OTSVC strategy.  

Real-Time Weather-Based Smart Ventilation Control (RTWSV): An algorithm was developed that interprets 
measurements of current and 24-hour historical outdoor temperature and moisture and varies ventilation to 
minimize sensible and latent load impacts. Simulations were conducted to tune the algorithm with differing 
flow targets and seasonal adjustment factors to maximize heating and cooling energy savings compared to 
continuous ventilation, maintain similar indoor RH, and achieve RE with respect to ASHRAE 62.2-2016. The 
second of two RTWSV schemes evaluated suggested that compliant annual average and acute RE could be 
maintained with 73% sensible and 9% latent load reductions during cooling conditions. To achieve these 
savings, ventilation flow is reduced during cooling weather, and elevated ventilation airflow during the 
floating period is necessary to maintain annual average RE. Simulations show this approach is likely to 
increase net moisture addition during the floating period over continuous ventilation; however, 
experimentation indicates the impact on indoor RH during this time is minor.  

A ventilation system controlled by the algorithm was implemented in a laboratory home and tested side by side 
with an identical home operating with continuous mechanical ventilation. Average cooling energy savings of 
10% were measured during the first three months of evaluation due to the reduction in sensible and latent load 
created by the advanced system. A fan with a maximum capacity nearly three times greater than the continuous 
fan was required to achieve these savings, and added fan energy needs to be carefully considered so as not to 
erode potential cooling savings. The negative impact of increased fan power on the savings of the scheme 
suggests that the use of permanent magnet motors with much lower power would be highly beneficial to both 
the ability to modulate flow over periods, rather than utilize a fixed fan speed for varying amounts of time, as 
well as to reduce fan electric power consumption.  
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5 Industry Considerations for Commercialization of 
Smart Ventilation Controls 

The results presented in this report show potential for SVC; however, currently only a small selection of smart 
ventilation systems is on the market, including from manufacturers such as AprilAire, QuFresh, and AirCycler. 
Each manufacturer’s system is able to suspend ventilation according to user-entered values for outdoor 
temperature and, in some cases, outdoor moisture, though no systems can automatically adjust flow to remain 
in compliance with ASHRAE 62.2 from an RE perspective. Commercially available calculators are just 
emerging that would enable a designer to implement a simple form of SVC, such as STSVC, by modifying a 
steady-state design flow using TMY3 data, to achieve RE with ASHRAE 62.2-2016. Therefore, to enable 
savings and IAQ improvements from SVCs, a concerted commercialization effort needs to be undertaken by 
manufacturers and other stakeholders such as builders, contractors, and standards organizations. During the 
course of the research, Building America Partnership for Improved Residential Construction (BA-PIRC) 
worked with manufacturers and other stakeholders to increase awareness of the potential of SVC and prime the 
industry for eventual device development and implementation. 

The potential market size for SVC is growing, and justifies the need for commercially available products. 
Market research shows that the annual market for ventilation systems could be as high as 600,000 to 700,000 
homes per year, as follows: 

• New site-built code homes: Our research suggests that 23 states have adopted International Residential 
Code (IRC) 2012 and have built roughly 500,000 new units in 2014 where whole-house ventilation 
system installations were required. Many more states are expected to adopt these IRC previsions in the 
future (Stevens 2015).  

• New Housing and Urban Development-code manufactured homes: Whole-house ventilation systems 
installed as part of the Manufactured Housing Construction Safety Standards. Approximately 60,000 
homes were built in 2015 (Starkey 2015).  

• Newly weatherized low-income units in U.S. DOE programs: Approximately 100,000 energy-efficiency 
retrofits were conducted in 2015 as part of DOE weatherization efforts (Francisco 2015). 

5.1 Stakeholder Outreach 
During 2015–2017, the BA-PIRC team worked with stakeholders to convene an advisory group and solicit 
input via emails, phone conversations, and in person at meetings and conferences. Core members of this 
advisory group included representatives from ASHRAE 62.2 committee, Lawrence Berkeley National 
Laboratory, the Building America Partnership for Advanced Residential Retrofit, The Energy Conservatory, 
Residential Energy Dynamics, Nest Labs, Panasonic, AirCycler, Johnson Controls, and AirAdvise.  

Additional stakeholder outreach efforts were conducted by convening informal discussions and leveraging 
conference presentations at venues including RESNET-2016, ACI-2016, Energy OutWest 2016, Westford 
Symposium 2016, and Building Thermal Envelopes XIII 2017. At these events, team members solicited 
feedback from homebuilders, home performance contractors, low-income weatherization contractors, and 
manufacturers of ventilation systems. In addition, an SVC expert meeting at FSEC on Jan. 28, 2016, provided 
an additional opportunity to discuss SVC commercialization with Building America industry stakeholder 
partners.  

5.2 General Opportunities and Challenges 
Various opportunities have been identified for manufacturers to consider when it comes to commercializing 
SVCs. Stakeholder feedback suggests that for SVC commercialization to transform the market, it should: 
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• Be a cost-effective solution with a savings-to-investment ratio of 1.0, which saves energy while 
maintaining acceptable IAQ. 

• Meet the value proposition to consumers and others (energy, health, safety, durability). 

• Comply with codes and standards such as ASHRAE 62.2-2016. 

• Have a large enough demand in the new and existing home markets. 

• Be perceived by SVC manufacturers as a profitable product development venture.  

• Be perceived by builders and home performance contractors as profitable to include.  

• Be incorporated into Energy Rating Indexes such as Home Energy Rating System, Home Energy Score, 
or ASHRAE 90.2 metrics; and be an added functionality of modeling tools (such as BEopt and 
EnergyGuage) to model these typical time-varying systems. 

Some identified gaps that need resolution include: 

• Determine if SVC is appropriate for very tight envelopes with heat recovery ventilation such as required 
in Passive House. This represents a small but growing sector of the potential SVC market.  

• Define “occupancy away” for machine learning SVC associated with connected thermostat “black box” 
algorithms. 

• Ensure that operation and maintenance (O&M) is as intended by incorporating O&M into SVC to ensure 
that the design, installation, commissioning, and inspection are in compliance with ASHRAE 62.2 
Section 4.5 and Appendix C – Variable Mechanical Ventilation. The new emerging market of residential 
IAQ monitors (FOBOT, AirAdvise, etc.) that advise occupants about IAQ issues in their home may also 
be part of O&M SVC to encourage occupants about the importance of IAQ and the O&M of their 
ventilation system. If the whole-house ventilation system is not operated or maintained by the occupants 
as intended, SVC will not be cost-effective. 

Additional discussion of some of these opportunities and challenges follows. 

5.3 Systems Costs and Emerging Opportunities 
One component of a research-to-market approach for SVCs that examines what it may take for mass market 
acceptance is to determine manufacturing cost estimates so they can be compared with costs of traditional 
ventilation systems. The cost premium for SVCs will depend on the complexity of the particular smart-
ventilation approach chosen. For example, a basic smart ventilator that relies on an occupancy timer and/or 
outdoor temperature will be $100 or less if it is integrated into existing smart web-enabled thermostat—also 
called connected thermostat (CT)—controls or another device that can access weather or occupancy 
information via the web instead of using local sensors. CT manufacturers are interested in having their CT 
platforms communicate with ventilation systems in compliance with ASHRAE 62.2-2016. Incorporating SVC 
algorithms into CT may add almost no incremental cost to the equipment or installation costs. More complex 
approaches involving sensing operation of other fans and/or occupancy would cost $100 to $150 due to sensor 
costs and additional installation labor, unless those signals can also be provided by web-enabled equipment via 
the internet of things.  

5.4 Industry Standards and the Authorizing Environment 
An important milestone in SVC commercialization was achieved when the “authorizing environment” (in this 
case, ASHRAE) made changes to ASHRAE Standard 62.2. These efforts resulted in the development of 
Section 4.5 – Variable Mechanical Ventilation and Normative Appendix C – Relative Exposure, which 
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provides additional guidance to stakeholders who are looking to commercialize ASHRAE 62.2-compliant SVC 
systems. SVC commercialization is expected to accelerate as a result of the new ASHRAE 62.2 guidance.  

To introduce the industry to new smart ventilation strategies, an ASHRAE 62.2 user’s manual was developed 
that focused on SVCs that met ASHRAE 62.2-2016 compliance. SVC work described in earlier sections of this 
report serves as the basis for “real world” examples in the ASHRAE 62.2 user’s manual, including Q&A 
examples related to: 

• STSVC in user manual example c-c: Outdoor temperature cutout  

• Occupancy control in user manual example c-b: Mechanical ventilation  

• General SVC algorithm development guidance in user manual example c-f: Calculating RE for non-
continuously operating whole-house mechanical ventilation systems.  

The current ASHRAE 62.2-2016 always assumes constant contaminant emissions; this assumption may limit 
potential of realizing energy savings with SVC. Future consideration could be given to the notion that for 
pollutants of concern, emission rates and pollutant concentrations are typically higher when the home is 
occupied. A straw poll proposal that sought to separate pollutant contributions of the building and the occupant 
was proposed at the ASHRAE 62.2 meeting in June 2017. For example, equation 4.1 of ASHRAE 62.2- could 
be revised to reflect occupancy by eliminating the need for the 7.5 cfm/bedroom+1 when the home is 
unoccupied. This proposal was generally acceptable to ASHRAE 62.2 members and to other stakeholders. 
Future discussions of such ideas could result in changes that will help improve energy savings from occupancy 
controls and support commercialization efforts.  

Work also needs to be done to achieve consensus about how to specify occupancy-based systems and 
components to best ensure that the home is unoccupied when system operation is curtailed. Strategies include 
one, or a combination, of the following approaches: 

• Simple scheduling of occupancy by occupants (like set-back thermostats) 

• Geofencing using smart phones 

• Adding occupancy sensors with and without machine-learning algorithms 

• Using CO2, VOC, and other pollutant sensors as a surrogate for occupancy 

• Allowing the emerging smart home CT technology marketplace to issue specifications, not ASHRAE 
62.2 

• Developing standards that help define an “occupants away” signal for occupancy-based systems. 

5.5 Gaps in System Design, Installation, and Commissioning  
As manufacturers develop SVCs, consideration has to be given to the design, installation, and commissioning 
of such systems. Identified gaps include: 

• Software tools based on ASHRAE 62.2-2016 Appendix C and the user’s manual are needed to help 
designers and verifiers ensure compliance and to credit SVC approaches for code compliance and 
ratings. 

• Onboard fault detection and diagnosis is needed to alert homeowners/contractors to failures, which is an 
often-overlooked feature of a smart ventilation system. 
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• As ventilation and other systems get smarter, equipment will likely rely on the internet to send and 
receive input from the cloud or from other devices. When a new home is built, stakeholders must take 
into account how it will be commissioned prior to occupancy, considering that internet access is typically 
set up by the occupants after they move in. 

• Who will be trained to commission a potentially vast array of smart ventilation systems? Considering 
that their operation will vary over time according to a number of changing control variables (outdoor 
temperature, etc.), how can they be commissioned during a single visit? 

• Smart ventilation systems likely need to be set up by the builder (and contractors) because most 
occupants are not likely to do it themselves due to its complexity. But if systems connect to and receive 
information from other devices (clothes dryers for exhaust run time, security system to sense occupancy, 
etc.), the builder may have to provide a package that includes a complete suite of gadgets so the system 
can be set up ahead of time. Also consider real-life issues such as when occupants replace their dryer 
with an incompatible model. 

• Consistency of communication among “smart” devices is essential so they can be leveraged as part of a 
SVC system. Some single-manufacturer platforms have devices that talk to each other. Partnerships have 
emerged among manufacturers to use the same communication platform to enable cross-cutting 
communication. However, different platforms are currently in use, including HomeKit (Apple) and 
Brillo/Weave (Google).  

5.6 Stakeholder Discussions on Commercialization  
The Building America Partnership for Improved Residential Construction worked with various industry 
partners to identify what sort of SVC development they are currently engaged in, further define what must be 
achieved to commercialize SVC, and extract general sentiments on the future of residential mechanical 
ventilation in general.  

5.6.1 Nest  
The Works with Nest program allows ventilation system manufacturers to partner by providing a “Nest away” 
signal to the ventilation system that may allow for occupancy-based controls. Nest away is determined by 
occupancy sensors at the thermostat that incorporate machine-learning algorithms. The Nest smoke/carbon 
monoxide alarms option (which also has occupancy sensors) can provide a higher degree of reliability 
associated with the Nest away signal when installed.  

Nest can also provide these Works with Nest partners with local outdoor temperatures to facilitate 
commercialization of temperature-based controls. Information available via CT about local pollen count, high 
ozone, forest fires, and other extraordinary events could also be options for SVC when ventilation is 
undesirable. Information from web-based CT like Nest may allow SVC to also communicate mission-critical 
O&M information to the occupant to help ensure operation per ASHRAE 62.2, like the Nest green leaf 
currently does to encourage energy-efficient behavior at home. A similar concept (healthy house icon) could 
be employed on the CT display to encourage habits that ensure a healthier indoor environment. This is critical 
given the challenges documented by Building America and others to “ventilate right when building tight.”  

5.6.2 Panasonic 
Panasonic has been developing a platform that allows for communication between the whole-house, 
intermittent exhaust ventilation systems, range hoods, and/or other smart appliances, such as clothes dryers and 
home security systems. The platform may provide the ability to communicate through the internet with 
weather sites to determine outside temperature for employing SVC. Occupancy sensors and geofencing, as 
well as monitoring key appliances, may help to determine occupancy conditions for occupancy-based systems.  
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The following insights provided by Russell Pope illustrate a general confusion on the part of builders and 
contractors, stemming from a lack of consistent guidance about proper specification of ventilation systems:  

These are all things that we have heard on at least once—exhaust this, supply that, use the air 
handling unit for distribution, but only if it has an efficient motor. No, you don’t want to do 
THAT! That is too much air and will waste electricity. That is not enough air, the people will get 
sick! Infiltration credit—how do I calculate that? 

5.6.3 AirCycler 
The AirCycler has been around for many years as a smart control feature called the TempGuard. This device is 
installed in the fresh air supply duct and disables the whole-house supply ventilation system when the outside 
temperature is below 35°F or above 95°F. The control ensures that no cold outside air is supplied to the 
furnace to prevent thermal shock to the heat exchanger and reduce draft-related occupant comfort complaints. 
These complaints can cause occupants to override controls and shut off the ventilation, which will not turn 
back on without occupant intervention. This lockout could employ the guidance in ASHRAE 62.2-2016 
Appendix C to adjust the ventilation flow rate in compliance with requirements for annual exposure if the 
climate, outside temperature at site, measured air leakage, and stack height are known. Calculators could be 
developed that may help determine the correct flow rate for any lockout temperature, as allowed in ASHRAE 
62.2 Appendix C and user’s manual.  

The following insights about the AirCycler are provided by Jason Wolfson:  

The future of ventilation: The ideal ventilation system would have a feedback loop and would 
control ventilation rates based on pollutants present in the home. But, at least for now, that's not 
possible. The list of pollutants is both long and undefined. Even if they were defined, the sensors 
required to monitor all possible pollutants, all tied back to a central controller, would be too 
expensive to purchase and install. 

If you visit AirCycler.com and play with the Ventilation Cost Calculator, you'll see the cost to ventilate the 
average home is under $200/year. If the goal is to reduce ventilation cost by 20%—an ambitious goal—you're 
only saving $40/year. Anything you do to achieve that savings can't cost much to purchase and install or the 
return on investment isn't there. Since pollutants can't be accurately or efficiently measured, it’s important to 
measure what causes most of them: the occupants. The future of ventilation uses the same solution that's used 
for so much these days—The Internet of Things. Using the Internet of Things to determine occupancy is 
simple. Systems could use IP sniffing for cell phones, geofencing, or interacting with other devices in the 
home like a Nest thermostat. The incremental cost of adding a Wi-Fi transceiver to the ventilation controller is 
under $5 and installation cost is minimal, if any. Using this functionality, ventilation rates can automatically 
ramp up and down based on how the home is used, operating when it matters most and with no input from the 
occupants. And finally, once you're tied to the web, endless climate data becomes available and allows for a 
host of additional capabilities. 

5.6.4 Residential Energy Dynamics 
The following insights about SVC design tools are provided by Rick Karg of Residential Energy Dynamics 
(RED):  

Residential Energy Dynamics (RED) has the software and capability now for the design of 
controls and real-life examples of smart ventilation devices and scenarios, all based on ASHRAE 
62.2-2016, Section 4.5 and Appendix C. RED currently offers a free online calculation aid for 
determining many of the variables involved with smart ventilation, including outdoor 
temperature. The Advanced Infiltration tool can be found at 
http://www.residentialenergydynamics.com/REDCalcFree/Tools/AdvancedInfiltration. In the 
near future, RED will make a smart ventilation application program interface available to 
interested research organizations and businesses. Additionally, RED will provide web-based 

http://www.residentialenergydynamics.com/REDCalcFree/Tools/AdvancedInfiltration
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calculation tools for smart ventilation temperature cut-off and diurnal, or longer-term, variable 
ventilation rates, suitable for controlling ventilation based on time-of-use electric rates or 
home/away schedules. 
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