Project Overcoat:
Moving Exterior Insulation to Existing Homes

Pat Huelman
NorthernSTAR Building America Partnership
University of Minnesota
Project Overcoat: Moving Exterior Insulation to Existing Homes

• The benefits of exterior thermal insulation over a single water, air, and vapor control layer.

• The challenges of the 1-1/2 story home in cold climates.

• An overview of an exterior retrofit roof insulation strategy that we are researching.
Introduction to Building America

- Focus is to reduce energy use by 50% in new houses and 30% in existing residential buildings.
- Promote building science using a systems engineering and integrated design approach.
- “Do no harm” => we must ensure that safety, health, and durability are maintained or improved.
- Accelerate the adoption of high-performance technologies.
Building America
U.S. Department of Energy

Industry Research Teams

BA-PIRC

BARA
Building America Retrofit Alliance

ARIES
Collaborative

BA-PIRC

ARCI
Alliance for Residential Building Innovation

NorthernSTAR

CARB
Consortium for Advanced Residential Buildings

IBACOS
Home Quality + Performance

NAHB
Research Center

PARR
The Partnership for Advanced Residential Retrofit
Building America Innovations

This research is paving the way for key innovations:

• 1. Building Science Solutions
 • Building on existing research on exterior insulation systems
 • Evaluating methods for insulating 1-1/2 story homes
 • Searching for alternative approaches & materials
NorthernSTAR’s Builder Resources

• This presentation is based on the benefits of exterior insulation systems
 – focus on 1-1/2 story homes in cold climates
 – with history of ice dams and comfort issues.

• Key technical references:
 – Project Overcoat for 1-1/2 Story Homes
 – BSC Building Insights: Ice Dams & Over-Roofing
 – Link to DOE resources: www.buildingamerica.gov
High-Performance Homes: Making the Case for Robust

• We must ensure our high-performance houses meet our expectations today and into the future?
• High-performance houses will push the envelope (mechanical systems, occupants, etc).
 – This will require more robust designs.
 – It will demand systems with forgiveness/tolerance.
 – We must have a more predictable delivery system.
 – The owners/occupants will need to be in the loop.
High-Performance Homes: Making the Case for Robust

• Robust
 – Strong, healthy, and hardy in constitution
 – Built, constructed, or designed to be sturdy, durable, or hard-wearing
 – A system that is able to recover from unexpected conditions during operation

• Thing that simply seem to work regardless what your subs, nature, or client throw at them!
High-Performance Homes: Making the Case for Robust

• Fragile
 – Easily broken; not having a strong structure
 – Unlikely to withstand severe stresses and strains

• Things that make perfect sense on paper, but seem to be “too fickle” to handle the real life situations they encounter.
High-Performance Homes: Making the Case for Robust

• When push comes to shove, will your home’s response be one of robustness or fragility?
 – Climate extremes
 – Abnormal interior conditions
 – Execution errors
 – Unusual operations
 – Neglected maintenance
Thinking Outside the Box

• Intro to “Exterior Thermal & Moisture Management System” (ETMMS)

• Examples in new construction

• Applications to existing homes
Where do the structural components belong?

• You have 5 choices
 – Outside
 – Both sides
 – Middle
 – In-between
 – Inside

• What if your structural materials
 – Change dimensionally with temperature / humidity and
 – Are subject to deterioration, if kept moist over time?
Where do the moisture control layers belong?

• In a heated and air-conditioned building with air and vapor permeable cavity insulation, where do the moisture control layers belong?

• You have 4 choices
 – Outside
 – Inside
 – Both sides
 – Middle
Two sided vs. one sided walls

• Is it possible to use a single material in a single plane as the air barrier, vapor retarder, and moisture barrier (or WRB)?
 – Absolutely

• And with the right material selections, it can be a universal wall for hot and cold climates.
A Better Way to Build

• Step 1: Put the structure on the inside
 – Light-frame construction
 – Timber frame
 – Concrete masonry
 – SEP = Structural Engineered Panel (studless construction)
A Better Way to Build

• Step 2: Put the thermal and moisture control layers on the outside.
 – PERSIST (Makepeace)
 – REMOTE (Alaskans)
 – PERFORM (Texans)
 – Out-sulation (???)
 – Perfect Wall (Lstiburek, w/ credit to the CBD)
New Technology – Old Look
ETMMS: Foundation, Walls, & Roof

• Build the entire structure;
 – foundation, floor systems, walls, and roof
• Wrap the entire envelope with a membrane properly integrated with openings / penetrations
• Add rigid foam insulation
 – 2 to 3” on foundation
 – 4 to 5” on walls
 – 6 to 8” on the roof
• Add furring strips, overhangs, etc.
• Install trim; siding; roof sheathing and roofing
House 3
House 4
House Tightness Testing @ 50 PA

<table>
<thead>
<tr>
<th></th>
<th>cfm</th>
<th>ACH</th>
<th>cfm/sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>House One:</td>
<td>207</td>
<td>0.90</td>
<td>0.12</td>
</tr>
<tr>
<td>House Two:</td>
<td>369</td>
<td>1.25</td>
<td>0.23</td>
</tr>
<tr>
<td>House Three:</td>
<td>145</td>
<td>0.45</td>
<td>0.08</td>
</tr>
<tr>
<td>House Four:</td>
<td>259</td>
<td>0.70</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Project Overcoat

• Bringing ETMMS to Existing Homes
 – Potential application to existing homes
 – Challenges & opportunities
 – Current focus on 1-1/2 story houses
New vs. Existing Homes

• It is apples and tofu!

• While the technologies may look similar, they are fundamentally ...
 – Different problems
 – Different strategies
 – Different delivery systems
 – Different economics
 – Different market interface
ETTMS: Application to Retrofit

• Performance Potential is Clearly There!
 – You can have your cake and eat it, too
 • increase energy efficiency
 • while enhancing building durability

• Most work can be completed from the outside

• However, you must take care of mechanicals
 – Sealed combustion
 – Mechanical ventilation
 – Pressure management
ETTMS: Application to Retrofit

• Sizing up the potential
 – What fraction of our existing homes with limited wall insulation are good candidates?
 – What fraction of those homes will have good access around the entire exterior perimeter?
 • stoops, garages, patios, decks, meters, etc.
ETTMS: Application to Retrofit

• Low Hanging Fruit
 – Simple house shapes with limited overhangs
 – Homes with good exterior access
 • detached garages with limited patios and decks
 – Homes with nice interior finishes
 – Homes in need of
 • siding, roof, and windows
ETTMS: Application to Retrofit

• Poor Candidates
 – Exterior is too complex
 – Pre-existing moisture has caused serious mold issues in structural cavities
 – Bad attic conditions
 – Wet foundation (especially crawl space)
 • unless that can be fixed a the same time
ETTMS: Application to Retrofit

- Walls versus Walls + Roof
 - Walls-only is seductive
 - Connection at top is not easy
 - House becomes a better chimney, so you must address attic air seal

 - For many homes the attic/roof is just as big a problem as the walls
 - 1-1/2 story walk-up attics (especially finished)
Building America NorthernSTAR Research

• ETTMS: Application to Retrofit
 – Roof only
 – Focus on 1-1/2 story homes
 – Particularly those with recurring ice dam issues
Anatomy of an Ice Dam
Market Potential
Roof Geometry
Exterior Insulation Strategies
Project Overcoat:
1-1/2 Story Roof Application
Project Overcoat: 1-1/2 Story Roof Application
Project Overcoat:
1-1/2 Story Roof Application
Project Overcoat:
1-1/2 Story Roof Application
Project Overcoat:
1-1/2 Story Roof Application
Project Overcoat:
1-1/2 Story Roof Application
Project Overcoat: 1-1/2 Story Roof Application

• Blower Door Results
 – Pre = 2925 cfm @ 50Pa
 – Mid 1 = 2774 cfm @ 50Pa
 – Mid 2 = 1607 cfm @ 50 Pa
 – Final = ???
World Class Research…

… at Your Fingertips

Building America Solution Center

COMING IN JANUARY
Project Overcoat:
Moving Exterior Insulation to Existing Homes

• Questions?

• Contact Information
 – Patrick H. Huelman
 – 203 Kaufert Lab; 2004 Folwell Ave.
 – St. Paul, MN 55108
 – 612-624-1286
 – phuelman@umn.edu