Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Low Load, High Performance Research Homes

Piljae Im, Ph.D.

Oak Ridge National Laboratory

Building America Technical Update Meeting

April 29-30, Denver, Colorado
ACKNOWLEDGEMENT

• This project was sponsored by the Building Technologies Office of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy and the Tennessee Valley Authority (TVA).
PRESENTATION OVERVIEW

- INTRODUCTION
- FIELD TEST OF THE FOUNDATION HEAT EXCHANGER (FHX) CONCEPT
- FOUNDATION HEAT EXCHANGER PERFORMANCE MEASUREMENTS
- ADDITIONAL FINDINGS AND COST COMPARISON
- SUMMARY
INTRODUCTION: Background

• **Ground Source Heat Pump Systems**:
 - One of the most energy efficient technologies for space conditioning and water heating
 - **Barrier**: Cost premium of GSHP
INTRODUCTION: Background

- **Ground Source Heat Pump Systems**:
 - One of the most energy efficient technologies for space conditioning and water heating
 - **Barrier**: Cost premium of GSHP

- **Foundation Heat Exchanger (FHX)**
 - Utilizing construction trench
INTRODUCTION: Background

- **Ground Source Heat Pump Systems**:
 - One of the most energy efficient technologies for space conditioning and water heating
 - **Barrier**: Cost premium of GSHP

- **Foundation Heat Exchanger (FHX)**
 - Utilizing construction trench

- **Why FHX for Low-load energy efficient homes**
 - Low space conditioning loads
 - Ideal for FHX implementation with minimum supplement excavation
INTRODUCTION: Research Objectives

- **Development of FHX Model and Design Tool**
 - Detailed description/results in several papers (Spitler et al. 2010, Xing et al. 2010, 2011, 2012, Spitler et al. 2010)

- **Demonstration of the FHX in full size houses (proof of concept):**
 - Design, construction and demonstration of FHX in two research houses in Oak Ridge, TN.
 - Performance monitoring results after one year of operation
FIELD TEST: Two Research Houses

- Identical 3,700 sqft floor plan
- Unoccupied houses with simulated occupancy (i.e., simulated MELs, DHW uses, and occupant’s internal heat gain)
- Different envelope strategies:
 - Structural Integrated Panels (SIPs)
 - Optimal Value Framing (OVF)
- Very low air leakage and high R-values
FIELD TEST: Two Research Houses

- Identical 3,700 sqft floor plan
- Unoccupied houses with simulated occupancy (i.e., simulated MELs, DHW uses, and occupant’s internal heat gain)
- Different envelope strategies:
 - Structural Integrated Panels (SIPs)
 - Optimal Value Framing (OVF)
- Very low air leakage and high R-values
- Low space conditioning loads (i.e., 2 ton installed vs. 4 to 5 ton for similar houses around)
- Ideal for FHX implementation with minimum supplement excavation
FIELD TEST: Two Research Houses

- **Space Conditioning and DHW Systems**
 - 2 ton WAHP (space conditioning) and 1 ½ WWHP (DHW) connected to FHX/HGHX

House 1 (SIP)

House 1 (OVF)
FIELD TEST: FHX Design

Loop configuration:
$\frac{3}{4}$ inch diameter high-density polyethylene (HDPE) pipes (three fluid circuits – out and back)

Residential Load Calculation:
Manual J and S
FIELD TEST: FHX Design

Loop configuration:
¾ inch diameter high-density polyethylene (HDPE) pipes (three fluid circuits – out and back)

Residential Load Calculation:
Manual J and S

Conventional HGHX Loop Design Tool
Max/Min EFT (F): 95 and 30F
FIELD TEST: FHX Design

Loop configuration:
¾ inch diameter high-density polyethylene (HDPE) pipes (three fluid circuits – out and back)

Residential Load Calculation:
Manual J and S

Conventional HGHX Loop Design Tool
Max/Min EFT (F): 95 and 30F

Required Length of the Trench (ft)
SIP House: 300 ft
OVF House: 360 ft
FIELD TEST: FHX Design

Loop configuration:
¾ inch diameter high-density polyethylene (HDPE) pipes (three fluid circuits – out and back)

Residential Load Calculation:
Manual J and S

Conventional HGHX Loop Design Tool
Max/Min EFT (F): 95 and 30F

Required Length of the Trench (ft)
SIP House: 300 ft
OVF House: 360 ft

Construction Excavation (ft)
SIP house: 180 ft (60% of total)
OVF house: 180 ft (50% of total)

Additional Excavation (ft)
FIELD TEST: FHX Design

Layout of FHX and HGHX at House 1 (SIP) (Numbers show measurement points)

Layout of FHX and HGHX at House 2 (OVF) (Numbers show measurement points)
FIELD TEST: FHX Design

Layout of FHX and HGHX at House 1 (SIP) (Numbers show measurement points)

Layout of FHX and HGHX at House 2 (OVF) (Numbers show measurement points)
FIELD TEST: Construction and Measurement Setup

• Purpose: Model validation and FHX energy performance analysis
FIELD TEST: Construction and Measurement Setup

- **Purpose:** Model validation and FHX energy performance analysis
- **Measurement points for FHX (15 min resolution)**
FIELD TEST: Construction and Measurement Setup

- Model validation and FHX energy performance analysis
- Measurement points for FHX (15 min resolution)
FIELD TEST: Construction and Measurement Setup

- Model validation and FHX energy performance analysis
- Measurement points for FHX (15 min resolution)
RESULTS: Performance measurements (Year 1)

<table>
<thead>
<tr>
<th></th>
<th>House 1 (SIP)</th>
<th>House 2 (OVF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling/Heating Thermostat</td>
<td>76F/71F (Maintained)</td>
<td>76F/71F (Maintained)</td>
</tr>
<tr>
<td>Supplemental electric resistance heating</td>
<td>None</td>
<td>66kWh</td>
</tr>
<tr>
<td>Annual Average Cooling System EER (including pumping)</td>
<td>14.3</td>
<td>14.0</td>
</tr>
<tr>
<td>Annual Average Heating System COP (including pumping)</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Average DHW COP</td>
<td>3.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>
RESULTS: Performance measurements (Year 1)

House 1

- Heating COP
- Cooling COP
- Average EFT (F)

House 2

- Heating COP
- Cooling COP
- Average EFT (F)
RESULTS: Performance measurements (Year 1)
RESULTS: Performance measurements (Year 1)

- FHX measurements
 - Annual maximum and minimum EFTs (within design range)
 - House 1: 93.2 F, and 33.4F, respectively.
 - House 2: 90.3 F, and 33.7F, respectively.
 - Average Delta T for cooling and heating
 - Cooling: -5.7F
 - Heating: 3.7F
 - Annual heat transfer between WAHP/WWHP and Ground
 - Near zero (well balanced) → No significant long term operation penalty expected.
RESULTS: Heat Transfer (House 1) (Year 1)
Additional Findings and Cost Comparison

- **50% to 60%** of the total ground loop was installed in existing construction excavation or utility trenches → *extra trench excavation needed*

- **100%** of the total ground loop could be installed only using existing construction excavation

- **Cost Comparison (GHX portion)**

<table>
<thead>
<tr>
<th>Type</th>
<th>Vertical Loop</th>
<th>Horizontal Loop</th>
<th>FHX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Cost</td>
<td>$3,000/ton</td>
<td>$2,250/ton</td>
<td>$1,000/ton</td>
</tr>
</tbody>
</table>
Summary/Conclusion

• GSHP and Market barrier
• Foundation Heat Exchanger Concept – cost reduction & performance
• Demonstration and performance measurements of FHX in two side-by-side, three-level, occupancy simulated research houses
• 50% to 60% of the total ground loop could be installed in existing construction excavation or utility trenches for the study houses
• 100% of the total ground loop could be installed only using existing construction excavation if under the slab excavation would be used for GHX installation
Summary (continued)

<table>
<thead>
<tr>
<th></th>
<th>House 1 (SIP)</th>
<th>House 2 (OVF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling/Heating</td>
<td>76F/71F (Maintained)</td>
<td>76F/71F (Maintained)</td>
</tr>
<tr>
<td>Thermostat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplemental electric resistance heating</td>
<td>None</td>
<td>66kWh</td>
</tr>
<tr>
<td>Average Cooling</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td>System COP (including pumping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Heating</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>System COP (including pumping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average DHW COP</td>
<td>3.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Summary (continued)

<table>
<thead>
<tr>
<th></th>
<th>House 1 (SIP)</th>
<th>House 2 (OVF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling/Heating</td>
<td>76F/71F (Maintained)</td>
<td>76F/71F (Maintained)</td>
</tr>
<tr>
<td>Thermostat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplemental electric</td>
<td>None</td>
<td>66kWh</td>
</tr>
<tr>
<td>resistance heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Cooling</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td>System COP (including</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pumping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Heating</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>System COP (including</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pumping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average DHW COP</td>
<td>3.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type GHX</th>
<th>Vertical Loop</th>
<th>Horizontal Loop</th>
<th>FHX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Cost</td>
<td>$3,000/ton</td>
<td>$2,250/ton</td>
<td>$1,000/ton</td>
</tr>
</tbody>
</table>
Thanks,

Questions and Comments,

Piljae Im

imp1@ornl.gov
Envelope component

<table>
<thead>
<tr>
<th></th>
<th>House 1 Structural Insulated Panel (SIP) Strategy</th>
<th>House 2 Optimal Value Framing (OVF) Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>IRR standing seam metal</td>
<td>IRR standing seam metal</td>
</tr>
<tr>
<td>Roof deck</td>
<td>SIPS</td>
<td>Foil facing on phenolic foam</td>
</tr>
<tr>
<td>Roof Deck Ventilation</td>
<td>Open at eave and ridge above sheathing</td>
<td>Open at soffit and ridge below sheathing</td>
</tr>
<tr>
<td>Attic</td>
<td>R-35 Cathedral (SIPs 10 in.)</td>
<td>R-50 Cathedral (aged phenolic) 24 in. O.C.</td>
</tr>
<tr>
<td>Wall</td>
<td>R-21 SIPS (6 in. thick)</td>
<td>R-21</td>
</tr>
<tr>
<td>Wall cavity</td>
<td>SIP (EPS)</td>
<td>Flash & batt (½ in. foam with R-16 batt)</td>
</tr>
<tr>
<td>Window</td>
<td>triple pane, third pane removable</td>
<td>triple pane, third pane removable</td>
</tr>
<tr>
<td>Floor</td>
<td>20 in. truss between basement & first floor with installed ductwork and 18 in. truss between first and second floor.</td>
<td>20 in. truss between basement & first floor with installed ductwork.</td>
</tr>
<tr>
<td>Foundation</td>
<td>Basement</td>
<td>Basement</td>
</tr>
<tr>
<td>Weather-resistive barrier</td>
<td>Applied</td>
<td>Applied</td>
</tr>
<tr>
<td>Foundation wall above grade</td>
<td>12 in. poured concrete with exterior 2 3/8 in. fiberglass drainage board insulation; stone facade</td>
<td>10 in. poured concrete with exterior 2 3/8 in. fiberglass drainage board insulation; stone facade</td>
</tr>
<tr>
<td>Foundation wall below grade</td>
<td>12 in. poured concrete with exterior 2 3/8 in. fiberglass drainage board</td>
<td>10 in. poured concrete with exterior 2 3/8 in. fiberglass drainage board</td>
</tr>
</tbody>
</table>