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Executive Summary

Home builders are exploring more cost-effective packaging of space and water heating in a new
generation of combined space and water heating systems (combos). Major water heater (WH)
manufacturers are now developing or marketing pre-engineered forced air combos. These
emerging combo technologies offer the opportunity to conduct meaningful tests, under controlled
laboratory operations, that differentiate the performance of the various packaged equipment
configurations being offered. Such laboratory controlled system comparisons have been lacking
and are needed to help guide best practices and validate simulation models within the Building
America Program and elsewhere.

Standardized testing for combo systems requires the air handler unit (AHU) to be tested against
space heating loads and the WH to be tested separately against water heating loads. The
laboratory tests conducted for this project subjected the combined AHU and WH to realistic and
coincidental space and domestic hot water (DHW) loads. The results highlight the attributes of
combo technologies that use traditional storage WHs and tankless WHs as their thermal engines.

Because they store hot water, storage WHs perform well by quickly delivering water at set point
for short demands. They deliver varying water temperatures during long draws, however,
because of temperature stratification in the tank. Tankless technology performs well with long
draws at steady flow rates. The following general findings and recommendations were derived
from the laboratory evaluations of tankless and storage combo systems:

e The tankless combo system that was tested maintained more stable DHW and space
heating temperatures than the storage combo system that was tested. Most notably,
temperature stratification in the storage tank caused supply air temperature instability. In
some cases the inconsistent temperatures were enough to create uncomfortable
conditions, such as draftiness from the AHU.

e The storage combo system that was tested delivered DHW at the tempered setting
(120°F) faster than the tankless combo system. The tankless system, however, reached
115°F nearly as fast (i.e., within 10 s) as the storage system.

e The tankless combo system that was tested consistently achieved better daily efficiencies
(i.e., 84%—-93%) than the storage combo system (i.e., 81%—-91%) when the AHU was
sized adequately and the water flows and WH temperature set points were adjusted
properly to achieve significant condensing operation. To achieve more consistent
condensing operation, it was necessary to minimize the return water temperatures from
the AHU by lowering the WH set point and reducing the water flow. These adjustments
were governed by comfort in terms of air temperature and air flow delivered. When
condensing operation was not achieved, the tankless and storage systems performed with
lower efficiencies than when condensing was achieved. In those noncondensing cases,
the tankless and storage systems performed with about the same daily efficiencies (i.e.,
75%—88%).

e AHUs currently packaged with combo systems are not designed to optimize condensing
operation for condensing WHs. More research is needed to develop AHUs specifically
designed for condensing WHs.

X1V
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e System efficiencies greater than 90% were achieved only on days where continuous and
steady space heating loads were required and significant condensing operation was
achieved. For days where heating was required only at night or the space heating loads
were “peaky,” the system efficiencies fell below 90%.
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1 Problem Statement

1.1 Introduction

Many field tests of combo systems have recently been completed, are ongoing, or planned,
including several within the Building America (BA) Program. In early field testing, though,
combination space and water heating systems (combos) have often experienced integration
issues. These issues stemmed from component compatibility and operational controls that
resulted from built-up configurations that mixed and matched components from multiple
equipment manufacturers. Now, however, newer, pre-engineered combo products with matched
components are entering the marketplace. These promise more consistent and improved
operation. The newer combo systems emerging in the form of these matched packages also offer
the opportunity to conduct meaningful tests under controlled laboratory operations that
differentiate the performance of the alternative packaged equipment configurations being
offered. Such laboratory controlled combo system comparisons have been lacking and are
needed to help guide best practices and validate simulation models within the BA program and
elsewhere.

1.2 Background

Home builders and HVAC/domestic hot water (DHW) equipment manufacturers are exploring
more cost-effective packaging of space and water heating in a new generation of combos. The
utility industry, recognizing this growing market potential, provided funding to the Gas
Technology Institute (GTI), through its Utilization Technology Development (UTD) gas and
combined utility research consortium. In November 2011, GTI completed a project that
identified, through modeling efforts, technical capabilities and market opportunities for efficient
combined space and water heating systems. Based on GTI’s research, two combo system
configurations were found to warrant laboratory evaluation for technology differentiation. These
included combo systems incorporating tankless water heaters (WHs) and those with storage-
based WHs. Modeling results from the research indicated that the tankless and storage-based
combo systems were suitable in modestly sized homes, even in cold climates. Conducting high-
resolution minute-by-minute load profiling as part of the research, however, revealed extreme
peak conditions for short periods of time, particularly in cold climates where the city water
supply can be very cold. During these periods, GTI found that combo system capacities could
sporadically and briefly fall short of demands throughout the year.

Figure 1 shows an example of minute-by-minute simulated space heating (blue) and DHW
(green) loads graphed chronologically for a 2,250-ft* home in Chicago built to BA2010
standards. For this example, maximum output capacities for various tankless WH combo systems
are shown overlaid to identify where output capacity shortfalls might occur for that model.
Surprisingly, the data showed that the well-insulated home would theoretically require the largest
hydronic furnace available for combo systems, but that system could be run at 120°F as opposed
to 140°F. Furthermore, the coincidental DHW loads could potentially surpass the largest tankless
WH burner capacity. Those results led to the following questions:

1. Would storage-based combo systems, although smaller than tankless WHs in output
capacity, be better suited to “ride out” brief capacity shortfalls during extreme
conditions?
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2. How well do the two systems respond and prioritize varying combined loads?

3. How do the systems compare in terms of energy efficiency (EE)?

Chicago BA2010 Btu Capacity

Rinnai
4,000
— - — Tankless WH - (1) RC98HP Ultra @ 199kBtuh Gas Rate
3800 | Tankless WH - (1) R75LS Luxury @ 180kBtuh Gas Rate Duse to the Jarge amount of data contained
— — Tankless WH - (1) RC80HP Ultra @ 157kBtuh Gas Rate in this graph, individual data points are
3600 = m Tankless WH - (1) V53i Value @ 150kBtuh Gas Rate not visible. Some demand spikes over very
! = Hydronic Furnace - (1) AHB90 @ 54.9kBtuh @ 120F short periods therefore cannot be seen.
3400 == = Hydronic Furnace - (1) AHBE0 @ 36.4kBtuh @ 140F
3200 17 Total Mins Undersized, 8 Minutes Max Continuous Duration
3,000
2,800
2,600
2,400 131 Total Mins Undersized, 10 Minutes Max Continuous Duration
2,200 333 Total Mins Undersized, 10 Minuntes Max Continuous Duration
2,000 | el i e I I N oo o Lo
1,800
1,600
1,400
1,200 | |
1,000 No Undersized Occurances

1 | [l I I L N
800 | [ ” i
600

400
200

0 60,000 120,000 180,000 240,000 300,000 360,000 420,000 480,000 540,000

Figure 1. Chronological load data for Chicago home built to BA2010 standards

1.3 Relevance to Building America’s Goals

Using the Energy Plus 6.0 computational engine, space heating and
DHW load profiles were generated for Chicago, Atlanta, and
Houston, which represent BA’s cold, mixed-humid, and hot-humid
climate categories, respectively. The load profiles were developed for
a two-story, 2,250-ft>, single-family house (see Figure 2) with three
bedrooms and two bathrooms. The Energy Plus models were
designed to BA2010 standards' or better, and standards based on
Lawrence Berkeley National Laboratory (LBNL) work? that defined
prototypical homes by vintage and location. The combo systems were
evaluated in the laboratory against a battery of selected 24-h test days

in each climate. Figure 2. Model home

! http://www 1 .eere.energy.gov/buildings/building_america/analysis_spreadsheets.html.
? Huang, J.; Hanford, J.; Yang, F. (November 1999). Residential Heating and Cooling Loads Component Analysis.
LBNL-44636. Berkeley, CA: LBNL. Accessed January 7, 2013: http://gundog.Ibl.gov/dirpubs/44636.pdf.
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As an order of magnitude, 2.9 million two-story single-family homes that were 2,250 ft* or less
were built after 1940 in major metropolitan areas of Illinois, Georgia, and Texas. This
information comes from Energy Information Administration (EIA) Residential Energy
Consumption Survey Data Tables.’

The models were used to compare baseline equipment with combo systems and to estimate
whole-house energy savings. The baseline model assumed a heating furnace with an annual fuel
utilization efficiency (AFUE) of 95% and a DHW heater with an energy factor (EF) of 0.65. The
combo system energy model assumed a tankless WH with an EF of 0.96. Whole-house energy
savings with combos compared to the baseline equipment were estimated at 5%—12%, with

the higher levels of savings estimated to occur in cold climates. These savings with combo
systems indicated great potential toward the BA program goal of reducing home energy use by
30%—-50%.

1.4 Cost Effectiveness

Energy modeling was done with Building Energy Optimization (BEopt) interface software
(Energy Plus) and the Typical Meteorological Year 3 weather database for regional climates.
Three distinct categories of the standard BA home model were developed to represent homes of
varying quality and vintages. For detailed modeling parameters of the house and construction
categories, see Appendix A. The categories are as follows:

e Vintage: represents a BA prototype home built before 2000
e BA2010: represents a BA prototype home built to BA2010 standards
e Max EE: represents a BA prototype home built better than BA2010 standards.

Table 1 shows the calculated energy and cost savings between the baseline and combo system
models by region, along with the regional natural gas prices per the EIA.* The modeling results
indicate $50-$200+ annual gas cost savings for the model home, depending on location and

vintage.
Table 1. Estimated Energy and Cost Savings
Gas Price Vintage BA2010 Max EE
$/MMBtu | MMBtu $/yr | MMBtu $/yr MMBtu $/yr
Chicago 9.10 25.7 233 13.7 125 11.6 105
Atlanta 15.09 12.8 193 9.3 141 7.5 114
Houston 10.44 6.8 71 5.6 58 5.0 53

3 http://205.254.135.24/consumption/residential/data/2009/#tabs-1.
* EIA (June 29, 2012). “Natural Gas Explained: Natural Gas Prices.” Accessed January 7, 2013:
http://www.eia.gov/energyexplained/index.cfm?page=natural gas prices.
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Installed cost data for baseline and combo systems equipment are being collected by the Center
for Energy and Environment (CEE)” as part of its federally funded program to install more than
400 combo systems in Minnesota homes. Table 2 summarizes preliminary data for installed
costs. The installed cost data are based on only eight installations of the 400 that are planned.

Table 2. Estimated Installed Costs for Baseline and Combo Systems

Comparable Equipment Installed Cost
®
Baseline furnace: 95% AFUE, 2-stage, electronically commutated 3,500
motor furnace
Baseline hot water heater: 50-gal storage, power vented, EF = 0.65 1,500
Combo system: tankless WH and air handler (AHU), EF = 0.96 6,500

1.5 Tradeoffs and Other Benefits

As Table 2 indicates, estimated installed costs for the baseline total $5,000. The installed costs
for the combo system are currently estimated at $6,500. It should be recognized that newer
technology comes with higher costs. Contractors installing the combo systems for the CEE
project, the basis for combo system installed costs, had very little experience with combo
systems. The research team expects contractors to become more familiar with the installations,
which will drive installed costs down. Furthermore, volume in the market is expected to bring
these new technology installations into common practice, which will drive down equipment and
installation costs and improve cost effectiveness.

Although cost effectiveness is marginal at this point, estimated whole-house energy savings are
encouraging as shown in Table 3.

Table 3. BEopt Estimated Whole-House Energy Savings

Vintage (%) BA2010 (%) | Maximum EE (%)
Chicago 9 9 12
Atlanta 9 10 11
Houston 7 8 9
Phoenix 5 6 7

> Schoenbauer, B. (July 31, 2011). “Installing Combination Systems: Optimized Designs and Potential Performance
Problems.” Minneapolis, MN: CEE. Accessed January 7, 2013:

http://www.buildingscienceconsulting.com/services/documents/file/2011-07-

31%20Combi%20Systems%20Expert%20Meeting/CEE_Schoenbauer Combi%20Lab%20v3%20-

%20BA%20experts%20mtg.pdf.
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2 Experiment

2.1 Research Questions

Combo systems are a promising path toward more cost-effective space and water heating
efficiency improvements in new high performance homes or in existing home retrofits. To
pursue this path, though, many questions about the emerging matched packaged equipment
configurations and their respective operational characteristics when meeting combined space and
water heating loads must be answered. The latest generation of combo system configurations is
designed around emerging high-efficiency residential WHs or boilers coupled with hydronic-
coil-equipped AHUs or radiant heating loops. The high-efficiency “single thermal engine” used
in the combo system configurations could be a condensing storage WH or a condensing tankless
WH or boiler.

Laboratory tests were conducted on these two condensing storage and condensing tankless
combo system configurations, with select space heating delivery components, primarily to
explore the following issues:

1. Space and water heating load profile matching with equipment capacity

2. Control response providing equipment capacity modulation and space and water heating
load demand prioritization

3. Supplied water temperature and equipment efficiency.

The tests were intended to characterize key operational attributes and to differentiate the
performance of the two combo approaches. The results can help guide best practices and validate
simulation models within the BA program and elsewhere.

2.2 Technical Approach

The performance evaluations for each of the two combo systems entailed a group of 24-h
space and water heating load profile tests. The profiles represented daily DHW draw
profiles overlaid on daily space heating load profiles spanning operating conditions from
hot to mixed to cold climates. The load profiles were generated in 1-min increments, and
the tests were conducted at that resolution. DHW draws were based on BA’s Domestic
Hot Water Event Schedules for a three-bedroom house (see footnote 1). The draws are in
6-s time-step profiles and were reduced to minute-by-minute data. Each chronological
draw across every time step was summed for 1 min and reported in gallons per minute.
The Energy Plus computational engine was used to generate space heating loads in 1-h
increments. Each hour from those calculations was divided by 60 to obtain minute-by-
minute loads. The aggregate minute-by-minute data represented the load profiles for each
of the 24-h profile tests.
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The load profiles were also used to create load duration graphs for each of the models. Load
duration graphs show the loads across the year sorted in order of highest to lowest loads. These
graphs show non-chronological durations of time during which systems can be undersized or
oversized.

Figure 3 shows space heating loads for the three home categories in each of the climate zones.
The primary graph shows the loads in descending order across 6,000 h, and the imbedded graph
shows the peak loads in descending order across the highest 40 h. The Chicago Vintage home
category is typical of an old unweatherized home into which a combo system could be retrofit.
The graphs indicate that even the largest hydronic AHU would fall short of meeting the peak
heating demands of such a modeled home. On the other hand, the graphs indicate that several of
the modeled homes that are tighter (BA2010, Max EE) or in warmer climates need only the
smallest hydronic AHU. The analysis does not rule out these combo system packages for cold-
climate retrofits because it was done for only one size of home. Instead, the analysis suggests
that cold-climate retrofits in unweatherized homes should be cautiously examined.

Figure 4 shows DHW loads in each of the climate zones. DHW loads are affected by the climate
zones because of the water supply temperatures. Although the DHW loads are short in duration
(e.g., 500 h/yr), their peak demands are high compared to space heating.
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Figure 3. Noncoincidental space heating profiling
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For each of the models, load duration curves were analyzed to estimate appropriate hot water
heater and hydronic AHU sizes for the testing (see Appendix B for case-by-case analyses).

Although combo systems are being marketed as matched packaged systems, the hydronic AHUs
are not specifically designed for condensing water heaters. If condensing water heaters are to
actually condense and maximize operating efficiency, enough heat must be removed from the
exhaust gas to cool it below the condensing temperature. If water is delivered to the AHU at too
high of a temperature (e.g., >140°F), the hydronic AHUs cannot transfer enough heat to the air to
sufficiently cool the return water. If the water returns to the WH at too high of a temperature, it
might not cool the exhaust gas sufficiently to achieve condensing operation.

For the cold-climate models (Chicago), the load duration graphs indicate that space heating loads
for the Vintage model are predicted to exceed the maximum capacity of the largest hydronic
AHU for a significant time, even with the hydronic AHU operating at >140°. For the cold-
climate tests, then, no Vintage models were selected. Eight representative 24-h BA2010 and Max
EE datasets containing the load profiles were selected as shown in Table 4. The group of datasets
includes at least 1 day in each month between November and March and comprises days with
mean temperatures between about 5°F and 48°F. The following combo system configurations
were tested against each of the datasets:
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1. Models: BA2010 and Max EE

A. Rinnai’s RC80HP condensing tankless WHU with a capacity of 157 kBtu/h, plus
a Rinnai AHB90 AHU with delivered water at 135°F

B. AO Smith’s Vertex condensing storage WHU with a capacity of 76 kBtu/h, plus a
Rinnai AHB90 AHU with delivered water at 130°F.

Table 4. Representative Cold-Climate Days

Month/Day Category Mean Te;nperature Supply Water
(°F) (°F)
January 6 Max EE 5.0 44.6
January 26 Max EE 8.5 44.2
January 5 BA2010 15.6 46.7
December 3 BA2010 23.0 52.1
November 27 BA2010 30.1 53.3
December 11 BA2010 33.0 50.6
February 22 BA2010 43.1 442
March 29 BA2010 47.5 473

For the mixed-climate models (Atlanta), six representative 24-h Vintage and BA2010 datasets
containing the load profiles were selected as shown in Table 5. The group of datasets includes at
least 1 day in each month between December and April and comprises days with mean
temperatures between about 26°F and 53°F. The following combo system configurations were
tested against each of the datasets:

Table 5. Representative Mixed-Climate Days

Month/Day Category Mean Te:nperature Supplzf Water
CF) CF)
February 3 BA2010 25.6 56.2
January 26 BA2010 29.0 56.3
December 3 BA2010 34.6 62.0
February 6 BA2010 38.1 56.3
April 6 Vintage 46.1 62.6
March 23 Vintage 53.0 60.3

—

Models: Vintage
A. Rinnai’s RC8OHP condensing tankless WHU with a capacity of 157 kBtu/h, plus a
Rinnai AHB90 AHU with delivered water at 135°F

B. AO Smith’s Vertex condensing storage WHU with a capacity of 76 kBtu/h, plus a Rinnai
AHB90 AHU with delivered water at 130°F.
2. Models: BA2010

A. Rinnai’s RC8OHP condensing tankless WHU with a capacity of 157
kBtu/h, plus a Rinnai AHB45 AHU with delivered water at 140°F
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B. AO Smith’s Vertex condensing storage WHU with a capacity of 76
kBtu/h, plus a Rinnai AHB45 AHU with delivered water at 135°F.

For the hot-climate models (Houston), four representative 24-h Vintage and BA2010 datasets
containing the load profiles were selected as shown in Table 6. The group of datasets includes at
least 1 day in each month between December and March and comprises days with mean
temperatures between about 30°F and 60°F. The following combo system configurations were
tested against each of the datasets:

1. Models: Vintage

A. Rinnai’s RC8OHP condensing tankless WHU with a capacity of 157
kBtu/h, plus a Rinnai AHB90 AHU with delivered water at 135°F

B. AO Smith’s Vertex condensing storage WHU with a capacity of 76
kBtu/h, plus a Rinnai AHB90 AHU with delivered water at 130°F.

2. Models: BA2010

A. Rinnai’s RC80HP condensing tankless WHU with a capacity of 157
kBtu/h, plus a Rinnai AHB45 AHU with delivered water at 140°F

B. AO Smith’s Vertex condensing storage WHU with a capacity of 76
kBtu/h, plus a Rinnai AHB45 AHU with delivered water at 135°F.

Table 6. Representative Hot-Climate Days

Month/Day Category Mean Tegnperature Supply Water
(F) (6]
February 11 BA2010 30.0 64.7
January 11 BA2010 41.0 64.6
December 9 BA2010 50.0 67.5
March 7 Vintage 60.0 66.7

Performance of the two representative combo system configurations was evaluated for each of
the discrete 24-h operating conditions listed in Table 4, Table 5, and Table 6. For each of those
tests, the research team focused on differences in operation between the tankless and storage
configurations, such as the following:

1. Load response (both time and prioritization of space versus water heating)

2. Supplied water temperature

3. Energy use and resulting efficiency.

Efficiencies were calculated on a 24-h test basis by dividing the total energy produced as DHW
and space heating air by the total electric and gas energy consumed by the WH and the AHU.
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2.3 Measurements

A key goal for this project was to determine how the combined
equipment performed against combined and coincidental space
and hot water loads. As such, the test setup is unique. The 24-h Insulated
tests were not conducted to standardized test methods. Those
methods require the WH and the AHU to be tested separately at
predefined steady-state conditions.

1,500 cf
Conditioned
Space

(algorithms simulate heat
capacitance for 17,000 cf home)

Figure 5 shows a conceptual diagram of the test setup. A 1,500-
cfenvironmental chamber was used to simulate the 17,000-cf
home. The combo system hot WH and the AHU delivered heat
to the space as called on by the thermostat. At the same time, a
chiller and a “cold-side” AHU modulated cooling to simulate
building heat loss. Algorithms in the chiller modulation control

were applied to account for the difference in heat capacitance Soidng Thermal

of air resulting from the difference in volume. DHW draws heatloss - Simulates
were simulated with a modulating control valve that dumped priw raws
hot water to a drain. Laboratory supply water was chilled to the  Figure 5. Simple test diagram
modeled supply water temperature.

Conditioned
Water

Handler Handler

The test plan consisted of two boundaries as shown in Figure 6. The System Boundary bounds
all but the necessary interconnections including power, fuel, city water, exhaust ventilation, and
DHW drainage. The Product Boundary includes all of the equipment supplied by the
manufacturers to make up the matched packaged products. For this testing, a package included
the WH and the AHU. Conditions for testing within the System Boundary were consistent with
ambient living conditions.

The test setup consisted of two air streams that were mixed in an air ASHRAE 41.1 mixing
device and delivered to an enclosed 1,500-cf space (Conditioned Space). The combo system
AHU resided in the Test Lab and delivered the “heat-side” air. A second AHU with a chilled
water cooling coil also resided in the Test Lab and delivered the cool-side air. Cool air delivery
simulated building heat loss and was controlled on an energy-unit basis tracking the minute-by-
minute space heating load model data. A three-way modulating bypass valve was used in the
chilled water loop for air temperature control from the cool-side AHU. Cool-side air inlet and
outlet temperatures along with air flow measurements were used to determine the energy input
needed to simulate the building heat loss. Heat-side air inlet and outlet temperatures along with
air flow measurements were used to determine the energy delivered to the Conditioned Space.
Energy delivered to Conditioned Space was also calculated using the liquid side for validation,
and was found to correspond within about 2% of the air-side calculations. All duct work was
tightly sealed and heavily insulated so that heat loss and air leakages were negligible.

The combo system space conditioning was operated based on calls from the thermostat in the
Conditioned Space. The BA prototype model used for the BA2010 models does not incorporate
thermostat setback. Similarly, the Vintage models do not incorporate thermostat setback. As
such, a fixed thermostat set point was used for those profile tests. The two Max EE test profiles
conducted for Chicago do incorporate simple thermostat setback, and the energy models were
used to account for makeup capacity and proper system sizing.

10
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Hot water flow through a modulating control valve was used to simulate DHW draws and was
controlled on an energy basis tracking the minute-by-minute DHW load model data. City water
inlet and DHW outlet temperatures along with water flow measurements were used to determine
the energy delivered to DHW. City water temperature was controlled with a 250-gal storage tank
that was maintained at the corresponding supply water temperature for the test day using a
separate apparatus that incorporated a chiller and a WH.

Natural gas consumed by the water heater was measured and corrected for pressure and
temperature to determine the fuel energy delivered to the Product Boundary. GTI measures the
caloric value of gas coming into the campus on a monthly basis. Power consumed by the WH
and the AHU was measured with watt meters to determine the electrical energy delivered to the

Product Boundary.
Temperature in the Test Lab was maintained at 75°F via thermostat control, but was not
recorded.
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Figure 6. Test boundaries
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2.4 Measurement Equipment
Equipment and materials used to conduct the tests, as described in Section 2.3, are listed in

Table 7.
Table 7. Test Instrumentation
Tag | Process Measurement Instrument Accuracy Quantity
T1 Cool-side return air Thermocouples (averaged) | > of 1.0°C or 0.75% 9
T2 Cool-side supply air Thermocouples (averaged) | +> of 1.0°C or 0.75% 9
T3 Heat-side return air Thermocouples (averaged) | +> of 1.0°C or 0.75% 9
T4 Heat-side supply air Thermocouples (averaged) | +> of 1.0°C or 0.75% 1
WH exhaust gas Ultra precise fast response +1/10 1
T5 RTDs (0.3 +0.005 [t )°C
WH city supply Ultra precise fast response +1/10 1
T6 RTDs (0.3 +0.005 [t )°C
Hydronic heat loop supply | Ultra precise fast response +1/10 1
T7 RTDs (0.3 +0.005 [t )°C
Hydronic heat loop return | Ultra precise fast response +1/10 1
T8 RTDs (0.3 +0.005 [t )°C
Water chiller supply Ultra precise fast response +1/10 1
T9 RTDs (0.3 +0.005 [t] )°C
Water chiller return Ultra precise fast response +1/10 1
T10 RTDs (0.3 +0.005 [t )°C
Cool-side chilled water Ultra precise fast response +1/10 1
T12 return RTDs (0.3 +0.005 [t] )°C
F1 Cool-side air flow Air flow station + 2% 1
F2 Heat-side air flow Air flow station + 2% 1
Flow Pressure Low Range Differential + 0.5% of full span 2
- Pressure Transmitter
F3 DHW flow Water flow meter + 1% of full span 1
F4 Hydronic heat loop flow Water flow meter + 1% of full span 1
F5 Water chiller flow Water flow meter + 1% of full span 1
Gas flow Gas meter, P/T <+1% 1
F6 compensated
Cool-side chilled water Water flow meter + 1% of full span 1
F7 supply
P3 Supply air static pressure Static Pressure + 1% of full span 1
KW1 Electric Energy Use Electric Wattmeter + 0.5% of full span 1
KWw2 Electric Energy Use Electric Wattmeter + 0.5% of full span 1
- Electric Energy Use Current Transformer + 0.05% of full span 2

Notes: RTD, resistance temperature device; P/T, Pressure/Temperature

12
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3 Analysis

The tests were intended to characterize key operational attributes for condensing storage and
tankless combo system configurations and to differentiate the performance of the two combo
approaches. Each system was tested against the loads to determine how well their capacities

matched with the model home and how well the systems responded to demands.

Efficiencies were calculated on a 24-h test basis by dividing the total energy produced as DHW
and space heating air by the total electric and gas energy consumed by the WH and the AHU.

Efficiency = (Qw + QA)/Qin
where

Qw = Energy produced as DHW (Btu/h)
QW =499.8 x F3 x (TDHW - Tcw)

where
F3 =DHW flow (gal/min)
Tpuw = Water heater DHW outlet temperature (°F)
Tcew = City water supply temperature (°F)
Qa = Energy produced as warm air (Btu/h)
Qa = 14.46 x F2 X py X (Tin — Tour)

where

F2 = AHU air flow (cfm)
pa = Density of air = 1.325 x P2 / (T3 + 459.7)
Tin = Coil inlet temperature (°F)
Tou = Coil outlet temperature (°F)
Qin = Fuel input (Btu/h)
Qin =F6x pg x HHV,

where

F6 = Gas flow (cf/h)
pe = Density of gas
HHV, = Higher heating value of natural gas.

13
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4 Results

In all, thirty-six 24-h tests were conducted. The Rinnai tankless combo system and the AO Smith
storage combo system were tested against each of the 18 daily load profiles. For each test day,
the same AHU was used—one test with the tankless and one test with the storage. For all tests,
the combo systems were configured per the manufacturer’s instructions. Additionally, for all
tests the WH set points and hot water flows to the AHUs were adjusted to maintain appropriate
heating capacities, delivered air temperatures, and return water temperatures. Table 8
summarizes the key system parameters. The parametric adjustments were made with one goal in
mind: to minimize the return water temperature and still achieve comfortable supply air delivery
(110°F—120°F).

Supply air and return water temperatures were found to be significantly higher with the storage
system than with the tankless. This accounted for the 5°F temperature set point differential
between the two systems. The reason for the higher storage temperatures is that water is drawn
off the top of the tank where the stacking effect makes it hotter than the set point.

Table 8. Key Test Parameters

Water WH Set Point Hot Water DHVV. . Al
Heater AH CF) Flow to AH | Tempering Air Flow
(gpm) (K (cfm)
Tankless | AHBO90 135 ~3.5 120 ~1,250
Storage AHB90 130 ~3.5 120 ~1,250
Tankless AHB45 140 ~2.1 120 ~T75
Storage AHB45 135 ~2.1 120 ~T775

Detailed results for each of the tests, including space heating and DHW load matching,
temperature profiles, and performance results are given in Appendix C. The following tables
(Table 9 through Table 26) summarize the daily performance results. It is important to restate
that the purpose of this project was not to conduct replicated certification tests against
standardized test procedures. Instead, the testing focused on subjecting the systems to
coincidental loads and letting them function in an as-installed setting. That approach provided
the opportunity to evaluate the real-world attributes of the systems, and it also allowed for
greater variability across tests that could not be fully controlled. For example, modulating
swinging cooling loads across a 24-h test period and applying them to a small test volume
(simulate building heat loss) introduces significant variables that are difficult to calibrate and
control. High-resolution, wide-ranged, and frequent hot water draws across a 24-h test period are
also difficult to calibrate and control. The test methods used to control the parameters, however,
allowed for two very different systems (tankless and storage) to be run across separate 24-h test
periods to get within about 15%, and often significantly better, in terms of space heating and
DHW energy loads. That type of comparison cannot be done for in-field testing.

14
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Table 9. Chicago MaxEE Model Test Performance Results, January 6
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
2.0°F /+12.0°F Applied heat loss (Btu) 447,845 | 369,101
City Supply Water: 44.6°F e Applied DHW draws (gal) 75.2 81.0
Max Heat Loss Rate: - -
~32,500 Btu/h E;:.; Energy consumed (Btu) 497,629 | 430,387
Approx. AH Capacity: - ; .
~56,700 Btu/h - Energy delivered (Btu) 439,508 | 357,812
Max DHW Draw: . o
P ol HHYV efficiency (%) 88 83
See Appendix C for details (Figure 10 through Figure 27).
Table 10. Chicago MaxEE Model Test Performance Results, January 26
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
2 9°F /+19.9°F Applied heat loss (Btu) 362,929 | 361709
City Supply Water: 44.2°F = Applied DHW draws (gal) 108.4 116.5
Max Heat Loss Rate:
~33,100 Btu/h Energy consumed (Btu) 442,178 | 447,336
Approx. AH Capacity: - .
~56,700 Btu/h i L e Energy delivered (Btu) 383,198 | 381,585
Max DHW Draw: . o
D) oy i HHYV efficiency (%) 87 85
See Appendix C for details (Figure 28 through Figure 45).
Table 11. Chicago BA2010 Model Test Performance Results, January 5
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
5.0°F/26.1°F Applied heat loss (Btu) 623,192 | 609,712
City Supply Water: 46.7°F | Applied DHW draws (gal) 53.4 60.5
Max Heat Loss Rate: ‘
~34,800 Btu/h - } Energy consumed (Btu) 681,692 | 687,978
Approx. AH Capacity: . | .
~56,700 Btu/h I h Energy delivered (Btu) 632,866 | 624,320
Max DHW Draw: . o
~4.0 gpm/5 min HHYV efficiency (%) 93 91

See Appendix C for details (Figure 46 through Figure 63).
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Table 12. Chicago BA2010 Model Test Performance Results, December 3
Test Day Summary Model Profile Daily Results Tankless | Storage
iy “14;’:}%‘;‘9"35;‘““5‘ Applicd heat loss (Btu) | 490,967 | 464,986
City Supply Water: 52.1°F - Applied DHW draws (gal) 106.2 119.1
Ma):ge;t (tmL ﬁii/l;ate: s Energy consumed (Btu) 558,168 | 566,915
s
Appl;(gz ,17401(_)] 1§ t?l[;ﬁﬂty: - Energy delivered (Btu) 500,914 | 490,591
9
1\3),(51;1331)3:: HHV efficiency (%) 90 87
See Appendix C for details (Figure 64 through Figure 81).
Table 13. Chicago BA2010 Model Test Performance Results, November 27
Test Day Summary Model Profile Daily Results Tankless | Storage
R L Applied heat loss (Btu) | 609,804 | 610,887
City Supply Water: 53.3°F - Applied DHW draws (gal) 46.2 52.2
Ma’igeg&}]‘;iﬁa‘e‘ Energy consumed (Btu) | 649,749 | 669,538
9
Appl;(;);. %l(_)l 1(3: zszﬂty: e Energy delivered (Btu) 604,948 608,752
“{2’.‘01;1371);?3‘ HHYV efficiency (%) 93 91
See Appendix C for details (Figure 82 through Figure 99).
Table 14. Chicago BA2010 Model Test Performance Results, December 11
Test Day Summary Model Profile Daily Results Tankless | Storage
LY 1‘1‘;"1 ‘,be/g‘ngﬂﬁt“res’ Applied heat loss (Btu) | 544,228 | 534,080
City Supply Water: 50.6°F - | Applied DHW draws (gal) 108.1 121.0
Ma’i;‘*;‘&h‘;iﬁate‘ - Energy consumed (Btu) | 631,765 | 633,693
o H
Appi‘;’g %%l gtz:l‘jﬁc‘ty’ " s | Energy delivered (Btu) | 573,633 | 562,924
“{2’.‘01);[;13 61);3:1“ HHV efficiency (%) 91 89

See Appendix C for details (Figure 100 through Figure 121).



U.5. DEPARTMENT OF

Energy Efficiency &

EN ERGY Renewable Energy
Table 15. Chicago BA2010 Model Test Performance Results, February 22
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: g
33.1°F/53.1°F Applied heat loss (Btu) 338,738 | 306,218
City Supply Water: 44.2°F - Applied DHW draws (gal) 97.8 108.8
Max Heat Loss Rate: N
~18,300 Btu/h o= Energy consumed (Btu) 409,704 | 391,547
Approx. AH Capacity: ] .
~56,700 Btu/h T A p— Energy delivered (Btu) 342,864 | 317,946
Max DHW draw: . o
0D ol HHYV efficiency (%) 84 81
See Appendix C for details (Figure 122 through Figure 139).
Table 16. Chicago BA2010 Model Test Performance Results, March 29
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: 0
35.1°F/55.9°F Applied heat loss (Btu) 338,050 | 361,884
City Supply Water: 47.3°F - : Applied DHW draws (gal) 139.7 158.5
Max Heat Loss Rate: = ’
~14,700 Btu/h | | Energy consumed (Btu) 433,315 | 479,571
Approx. AH Capacity: g .
~56,700 Btu/h g [ 1 Energy delivered (Btu) 368,408 | 405,535
Max DHW Draw: . o
~4.2 spm/8 min HHYV efficiency (%) 85 85
See Appendix C for details (Figure 140 through Figure 157).
Table 17. Atlanta BA2010 Model Test Performance Results, February 3
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
16.0°F/35.1°F Applied heat loss (Btu) 528,493 538,676
City Supply Water: 56.2°F j: Applied DHW draws (gal) 58.3 62.3
Max Heat Loss Rate: ;»
~30,200 Btu/h e Energy consumed (Btu) 623,102 | 640,823
Appl;(;);. 4A01(_)l 1(3: zszﬂty: __L- Energy delivered (Btu) 552,058 | 567,382
Max DHW Draw: HHV efficiency (%) 89 89

~2.0 gpm/8 min

See Appendix C for details (Figure 158 through Figure 175).
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Table 18. Atlanta BA2010 Model Test Performance Results, January 26
Test Day Summary Model Profile Daily Results Tankless | Storage
iy “gi";%‘;‘g’gﬁ;‘““s‘ Applicd heat loss (Btu) | 485,469 | 491,210
City Supply Water: 56.3°F : Applied DHW draws (gal) 103.4 111.3
Ma)i;eg (tmL ﬁii/l;ate: i e Energy consumed (Btu) 598,007 | 615,974
> . ||
o I
Appl;(:);;. f()l(_)l 1§ t?l[;ﬁﬂty- T VR Energy delivered (Btu) 525,516 | 539,212
9
“{jﬁ‘;’gﬁgg’;ﬁi‘:: HHV efficiency (%) 88 88
See Appendix C for details (Figure 176 through Figure 193).
Table 19. Atlanta BA2010 Model Test Performance Results, December 3
Test Day Summary Model Profile Daily Results Tankless | Storage
iy “gg’g%j‘f;ﬁ;‘““s‘ Applied heat loss (Btu) | 237,614 | 266,762
City Supply Water: 62.0°F Applied DHW draws (gal) 81.3 83.9
Ma’iﬁeg;(}]‘;iﬁa‘e‘ e Energy consumed (Bfu). || 277,328. || 323,871
) i |
Y. . i
Appi‘;’;' fozl g&'}ﬂmy’ ‘.| L | Energydelivered (Btw) | 232,389 | 272,571
o lg);{n\:/vfz)zivlvl : HHYV efficiency (%) 84 84
See Appendix C for details (Figure 194 through Figure 215).
Table 20. Atlanta BA2010 Model Test Performance Results, February 6
Test Day Summary Model Profile Daily Results Tankless | Storage
L “34;’333‘4";’{;“‘“8‘ Applicd heat loss (Btu) | 400,602 | 411,699
City Supply Water: 56.3°F B Applied DHW draws (gal) 41.0 45.8
Mafgeg&h‘;iﬁate‘ - Energy consumed (Btu) | 442,489 | 470,029
: i
Appi‘;’; ﬁ)lg gﬁgﬁc‘ty‘ " —t——— . | Energy delivered (Btu) | 379,183 | 401,160
“{2’.‘51;1;1‘:1‘;‘?1;?:‘ HHV efficiency (%) 86 85

See Appendix C for details (Figure 216 through Figure 234).
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Table 21. Atlanta Vintage Model Test Performance Results, April 6
Test Day Summary Model Profile Daily Results Tankless | Storage
iy “g;’g%‘;‘g’fﬁ;‘““s‘ Applicd heat loss (Btu) | 309,081 | 295,182
City Supply Water: 62.6°F - Applied DHW draws (gal) 71.6 75.2
Ma’:gef(tnh‘;iﬁa‘e‘ - Energy consumed (Btu) | 349,895 | 360,149
9 1
ity: B | [l .
Appi‘;’z %;I lggl‘;ﬁc‘ty' ‘. | .| Energy delivered (Btu) 305,445 | 298,032
b
“ff’; lg);{n‘:/vli’ ran: HHV efficiency (%) 87 83
See Appendix C for details (Figure 235 through Figure 252).
Table 22. Atlanta Vintage Model Test Performance Results, March 23
Test Day Summary Model Profile Daily Results Tankless | Storage
L “ﬁ’gf;f;‘é{’;{?“res‘ Applied heat loss (Btu) | 236,894 | 271,582
City Supply Water: 60.3°F " Applied DHW draws (gal) 74.3 75.1
Ma’:ge;;(}]‘;iﬁa‘e‘ - - |  Energy consumed (Btu) | 276,339 | 318,840
? i 1
Appi‘;’g %ﬁl g&‘;ﬁmy: ‘mmmme. | Energy delivered (Btu) | 236,145 | 265,406
“{gﬁ‘;?;:lv/sl)lﬁff HHV efficiency (%) 85 83
See Appendix C for details (Figure 253 through Figure 270).
Table 23. Houston BA2010 Model Test Performance Results, February 11
Test Day Summary Model Profile Daily Results Tankless | Storage
L “gf’;%‘;‘gp(‘;{;t“res‘ Applied heat loss (Btu) | 469,495 | 474,407
City Supply Water: 64.7°F N Applied DHW draws (gal) 79.7 82.9
Ma’iﬁi‘&h‘;ﬁi}:‘ate‘ = Energy consumed (Btu) | 566,579 | 585,523
, )
Appi‘;’; 2)}01 g&gﬁaty‘ "l | .. | Energy delivered (Btu) 492,477 | 504,984
1\{;).‘01?«;:1331)1;?:: HHYV efficiency (%) 87 86

See Appendix C for details (Figure 271 through Figure 288).
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Table 24. Houston BA2010 Model Test Performance Results, January 11
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
30.0°F/52.0°F Applied heat loss (Btu) 297,513 | 304,799
City Supply Water: 64.6°F gl Applied DHW draws (gal) 53.9 55.5
Max Heat Loss Rate: %
~18,700 Btu/h - Energy consumed (Btu) 331,061 | 358,595
Approx. AH Capacity: .
~37,400 Btu/h e || il Energy delivered (Btu) 274,610 | 291,182
Max DHW Draw: . o
L5 ol vt HHYV efficiency (%) 83 81
See Appendix C for details (Figure 289 through Figure 306).
Table 25. Houston BA2010 Model Test Performance Results, December 9
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
46.0°F/54.0°F Applied heat loss (Btu) 186,130 | 176,746
City Supply Water: 67.5°F - Applied DHW draws (gal) 76.9 79.7
Max Heat Loss Rate:
~7,200 Btu/h - Energy consumed (Btu) 214,151 | 217,643
Approx. AH Capacity: ! .
~37,400 Btu/h Energy delivered (Btu) 163,282 | 156,205
Max DHW Draw: . o
~2.0 gpm/13 min HHYV efficiency (%) 76 72
See Appendix C for details (Figure 307 through Figure 324).
Table 26. Houston Vintage Model Test Performance Results, March 7
Test Day Summary Model Profile Daily Results Tankless | Storage
Min/Max Temperatures: .
48.0°F/72.0°F Applied heat loss (Btu) 47,355 55,860
City Supply Water: 66.7°F - Applied DHW draws (gal) 12.3 11.7
Max Heat Loss Rate: "
~6,200 Btu/h " Energy consumed (Btu) 45,995 69,640
Approx. AH Capacity: B .
~56,700 Btu/h Energy delivered (Btu) 31,940 | 40,603
Max DHW Draw: HHV efficiency (%) 69 58

~1.0 gpm/1 min

See Appendix C for details (Figure 325 through Figure 342).
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5 Key Findings and Recommendations

The following general findings and recommendations were derived from the laboratory
evaluations of tankless- and storage-based combo systems:

1. The tankless combo system maintained more stable DHW and space heating
temperatures than the storage combo system. Most notably, temperature stratification in
the storage tank was found to cause supply air temperature instability. As water is drawn
from the tank, it comes off the top where, in some cases, the stacking effect causes the
water to be hotter than the average tank temperature. The stacking effect occurs because
the hot water is less dense and rises to the top of the hot water tank. As water is drawn
down lower in the tank, the delivered temperature gets cooler. For long space heating
draws, or periods where space heating and DHW are needed, the temperature decay is
enough to create uncomfortable drafty conditions from the AHU. Those conditions could
occur when air is delivered from the AHU at less than 110°F as was seen at times during
the laboratory tests.

Further testing is appropriate to determine if alternative tap positions would stabilize
delivered water temperature for storage-based combo systems.

2. The storage combo system delivered DHW at the tempered setting (120°F) faster than the
tankless combo system. The tankless system reached 115°F, however, nearly as fast (i.e.,
within 10 s) as the storage system.

3. The tankless combo system consistently achieved better daily efficiencies (i.e., 84%—
93%) than the storage combo system (i.e., 81%—-91%) when the AHU was sized
adequately and adjusted properly to achieve significant condensing operation. To achieve
more consistent condensing operation, it was necessary to minimize the return water
temperatures by adjusting the water heater set point down and reducing the water flow.
These adjustments were governed by comfort in terms of air temperature and air flow
delivered. When condensing operation was not achieved, the tankless and storage
systems performed with lower efficiencies than when condensing was achieved. In those
noncondensing cases, the tankless and storage systems performed with about the same
daily efficiencies (i.e., 75%—88%).

4. AHUs currently packaged with combo systems are not designed to optimize condensing
operation for condensing WHs. To achieve overall system efficiencies greater than 90%,
the WH must condense while delivering DHW and space heating. While delivering
DHW, cold water enters the heat exchanger and cools the exhaust sufficiently for
condensing operation. While delivering space heating, however, water returns to the
system at temperatures well above 100°F. If the AHU was sized large enough (as was
generally the case with the AHB90), enough energy was removed from the hot water
(e.g., <107°F) to cool exhaust gas down to condensing temperatures. For the AHB45 to
maintain heating capacities, the WH set point needed to be increased. To minimize the
return water temperature, the water flow to the coils was reduced to 2 gpm. Even at that
low flow, the return water temperature was greater than 107°F and resulted in efficiencies
less than 90% for all of the tests with the AHB45.

More research is needed to develop AHUs specifically designed for condensing WHs.
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5. System efficiencies greater than 90% were achieved only on days where continuous and
steady space heating loads were required. For days where heating was required only at
night or the space heating loads were “peaky,” the system efficiencies fell below 90%.

6. For DHW draws, temperature stratification in the storage tank goes relatively unnoticed
because the water temperature is generally maintained higher than the tempered valve
setting. Only during very long DHW draws (>15 min) do temperatures dip below the

setting.
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Appendix A: Detailed Modeling Parameters

Building America 2010 Residential Prototype Building Site and Geometry

Home Type = Single Family Detached

Finished Floor Area of unit, Above Grade

Mum Floors of unit (Above Grade)

Building Aspect Ratio (Width/Depth)

Foundation Type (slab, basement, crawlspace, exposed floor)

Basement Floor Area
Basement Finished?
Conditioned Floor Area

Total Floor Area (conditioned+unconditioned)

Attic Vented or Unvented
Mumber of Bedrooms
Mumber of Bathrooms
Garage Depth

Garage Protrusion

Total Garage Floor Area
Floar-to-floor Height

ﬁ2
#
ratio
Basement
s ft
YES/MO
ﬂ:2
ﬁ2
Yented/Unvented
#
#
ft
ft
sq ft
ft

2250

2

1

Basement + Slab
900
NO
2250
3150
Vented

3

2

20
10
400

3

¢ Residential building models were constructed per BA2010 residential prototype
recommendations and modified to reflect climate conditions in three geographical

locations. See Table 27.

e The high-efficiency version of residential models upgrades BA2010 with high-efficiency

envelope, glazing, and ENERGY STAR appliances. See Table 27.
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The Vintage version of residential models downgrades the BA2010 prototype using envelope
recommendations per work at LBNL (see footnote 2). See Table 27. Residential DHW loads
were generated using data from the National Renewable Energy Laboratory’s Standard DHW
Event Schedules Spreadsheet Tool (01/05/2011). Multievent load data from the spreadsheet were
postprocessed and aggregated to minute-by-minute annual load profiles for the climate
conditions in three geographical locations. For details see “Tool for Generating Realistic
Residential Hot Water Event Schedules.”® Table 27 — Residential Building Model Details

CASE BA2010 BA2010 + Max. Envelope/Ducts/Controls EE Vintage
GEOMETRY Total Finished Floor Area 22504 22501 22500
Beds 3 3 £
Baths 2 2 z
SITE
Location USA_IL Chicago-OHare \ntl.AP. 725300 TMY3 UsA L Chicago-OHare \ntlAP. 725300 ThY3 UsA_IL_Chicago-OHare.Intl. AP. 725300 TMY3
Building
Orientation North North North
Neighbors None None None
Operation
Heating Set Point 71F no sethack aring weekdays 71F no setback
Cooling Set Point 78 ¥ o setback HE ari v 76 ¥ no setback
Misc Electric Loads, kwh/year 1, 3279, gas/elec house 1, 3279, gas/elec house 1, 3279, gas/elec house
Misc Gas Loads, therms/year 1,78 L78 1. 7.8
Misc Hot Water Loads Benchmark, sink 23, shower 27, bath. 7 galfday Benchmark, sink 25, shower 27, bath. 7 galfday Benchmark, sink 25, shower 27, bath. 7 galfday
Natural Ventilation Benchmark, Jan-Dec3l Benchmark, Jan-Dec3l Banchmark, Jan-Decil
walls
Wood Stud R13 batts, 24, 16"0.C. + RS foam, Framing 0.25, Comp. R 17 |R21 batts, 2x6, 24"0.c. + 1" foam, framing 0.218, comp R 24.2  |R11 batts, 2x4, 1670.c. , Framing 0.25
Exterior Finish Stucco, R 0.2 Stucca, k0.2 Stucco, R 0.2
Interzonal walls K13 batts, 224, 16°0.c. + RS foam K13 batts, 2x4, 1670.c. + RS foam K11 batts, x4, 16%0.c., Comp. A 10.1
Cellings/Roofs
Unfinished Attic Celling R33 Cellulose Blown-in, Vented, Comp R 28.9 Ceiling R&0 C wn-in, Vented, Comp RE1
Roofing Material Asphalt Shingles, White or cool colors, Abs. 0.75,Emiss.0.91 [Asphalt Shingles, Wi ¢ cool colors, Albs. 0.75,Emiss.0.51
Radiant Barrier None Radiant Barrie
Foundation/Floors
slab 2-ftr10 2ft k10
Unfinished Basement Wall 8ft R10 Rigid Wall 81t R10 Rigid
Interzonal Floor R-23.0 R-23.0
Exposed Floor 20% Exposed 2% Exposed 20% Exposed

Thermal Mass

Floor Mass
Ext Wall Mass
Partition Wall Mass
Ceiling Mass
Furniture Mass

wood Surface

1/2" Drywall

1/2° Drywall

12" Ceiling Drywall
Light-Weight, 8 Ibs/sqft

wood Surface

1/2" Drywall

1/2" Drywall

1/2* Ceiling Drywall
Light-Weight. 8 Ibsisalt

wood Surface

1/2" Drywall

1/2" Drywall

12" Ceiling Drywall
Light-Weight, 8 lbs/sqht

Windaws & shading

Window Areas

15.0% F25B25 125 R25/2%0-72/72/724/ 12

15.0% F25B2S 125 A25/290-72/72/72/ T2

15.0% F25 B25 L25 R25/200-T2/72/72/72

window Type U.35_SHGS.35 Low-2 v. high SHGC arg (U .325_SHGS.511) Do UA4T_SHGS.547
Interior Shading Benchmark, cooling 0.7, heating 0.7 Benchmark, coaling 0.7, heating 0.7 Banchmark, cooling 0.7, heating 0.7
Eaves n 21t 21t
Overhangs Nona MNane Mone
Airflow
Infiltration Tight, SLA 0.00036 Tightest, SLA 0.00009 Leaky, SLA 0.00070
Machanical ventilation Exhaust, 100% of A-62.3, 51.5 cfm Exhaust, 100% of A-62.2, 52.5 cfm Exhaust, 100% of A-62.2, 52.5 cfm
Major Appliances
Refrigarator standard, Bottom Mount Freerer, 663 kwhyear ergystar, Bot Mount Freazer, 453 standard, Bottom Mount Freszer, 668 kWh/year
Cooking Range Electric, Conventional, 500 kWh/year Electric, Conventicnal, 500 kWh/year Electric, Conventional, 500 kWh/year
Dishwasher Standard 175 kwh i Standard 175 kwWh
Clathes Washar standard, Mod £F 1.21, 78 kwh Bry St standard, Mod EF 1.41, 78 kwh
Clothes Dryer Electric, 2.26 kWh/cycle, 1076 kWh Electric. 226 kWh/cycle, 1076 kWh Electric, 2.26 kWh/eycle, 1076 kWh
lighting

Lighting, Liv 1554, Grg &0, Ext 326 kWh

B10 Benchmark, 1738 kWh/year, CFL 21, LED O, LFL13

B10 Benchmark, 1738 kWh/year, CFL21, LED O, LFL13

B10 Benchrmark, 1738 kWh/year, CFL 21, LED O, LFL13

Space Conditioning

Air Conditioner

SEER 13, EER 11.09

SEER 13, EER 11.09

SEER 10, EER 9.31

Furnace Gas, AFUE 78%, 1.242 Bru/Btu Gas, AFUE 78%, 1242 Bru/Btu Gas, AFU . 1.242 Btu/Btu
Duscts Typical, Uningulated, LF 0.150 Tight, RE Insulation, LF 0.075 eaky, Uningulated, LF 0.300
Ceiling Fans Benchmark Benchmark Benchmark
Water Heating
Water Heater Gas Standard, EF 0,59, Tank 40 gal, burner 40200 Btu/h Gas Standard, EF 0,59, Tank 40 gal, burner 40200 Btu/h Gas Standard, EF 0.59, Tank 40 gal, burner 40200 Btu/h
Distribution R-0, TrunkBranch, Copper R-0, Trunk@ranch, Copper R-0, Trunk@ranch, Copper

® Hendron, B.; Burch, J.; Barker, G. (2010). “Tool for Generating Realistic Residential Hot Water Event Schedules.”
Paper presented at SimBuild 2010, New York, August 15-19. Accessed January 8, 2013:
http://www.ibpsa.us/pub/simbuild2010/technicalPresentations/SB10-PPT-TS06B-01-Hendron.pdf.

24



U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Appendix B: Load Duration Graphs

Chicago Load Duration - Space and Water Heating

5,500
——— BA2010 Heating 5500
e —— Tankloss WH - (2) RCBOHP @ 167kBtuh Gas Rate
= Hydronic Fumace - (1) AHES0 @ 78 2kBtuh + (1) AHB45 @ 40.1kBluh @ 140F 5000 M = == Tenkless WH - (2) V53i Value @ 150kBiuh Gas Rate
= = = Hydronc Furnace - (1) AHBSO @ 76 2kBtuh @ 140F Tankiess WH - (1) RC38HP Ultra @ 199kBtuh Gas Rate
5,000 Hydronic Fumnace - (1) AHBS0 @ 54 9kBiuh @ 120F = Tonkkess WH - (1) RCBOHP Ultra @ 157kBtuh Gas Rate
i Hrg:gr': Eu:nn:::mmggggggfgﬁg::gi 4500 Tarkiess WH - (1) RT5LS Luxury @ 180kBtuh Gas Rate
T e Rrmace (1) A1BG0 & 3 kb 1207 |22 T W (1) ROALS Ly @ ToMBAGoR R |
4,000
4500 The highest DHW loads fall below the maximum capacity
3500 of the largest Rinnai tankless water heater (RC98HP).
5 .. The DHW loads nominally exceed the maximum capacity
4,000 - of the next step down in the Rinnai series (RC80HP).
z, L S ¥ S U R
% \—J(\
S
3,500 2000
1,500
H .
2 ;000 1000 Domestic Hot
=]
£ Water
E %0
2
E
§ 2500 B o
a8 s')ace Heatmg ] 280 500 =0 1,000 1250 1,500 1,750 2,000 2250 2,500
w Minutes
2,000 4
The highest space heating loads for the Vintage model exceed the maximum
capacity of the largest Rinnai air handler (AHB90) for well over 40 hours of
1,500 the year; even if the system is operated at 140F as opposed to 120F.
1,000
The highest space heating loads for the BA2010 model fall below the maximum capacity of the largest Rinnai air
handler (AHB90); even if the system is operated at 120F as opposed fo 140F.
0

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2250 2,500
Minutes

Figure 7. Chicago load durations
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Atlanta Space Heat Load Duration

3500
— BA2010 Heating ase0
Hes === Tasidess WH - (1) RCEOHP Uitra & 157kBiuh Gas Rate
e MaxEE Heating 2% Tarkbess WH « (1) RTELS Luwry § 180k85uh Gas Rate
3250 | | = Hydronic Fumnace - tl]MBW% ?Gwmg 140F === Tankless WH - (1) VE3i Value § 150a8%h Gas Rate
; ——— Hydronic Funace - {1) AHBO0 @ 54 SkBtuh @@ 120F 3000 . - . - -
Hydronic Fumnace - (1) AHB45 @ 40 1kBtuh @ 140F
= Hydronic Fumace - (1) AHB45 @ 27 TkBtuh ) 120F zr
3000 “{ """"""""""""""""""""""""""""""""""""
0 o
L W The highest DHW loads fall below the
2750 E. . maximum capacity of the Rinnai RC80HP.
H
§ o
2,500 = 12%
1,000
2250 -

maximum capacity of the largest

1,750

Btu

1,500

The highest space heating loads — *
200 | fOr the Vintage model exceed the =

o 0 0 b 1,000 1250 1500 1150 200 1% 2500
Rinnai air handler (AHB90) -
operated at 120F for about eith
total hours of the year.

20 The highest space heating loads for the BA2010 model fall below the
maximum capacity of the Rinnai AHB45 air handler operated at 140F.
OD 250 500 750 1,000 1,250 1,500 1,750 2,000 2250
Minutes

Figure 8. Atlanta load durations
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Houston Load Duration - Space and Water Heating
3,000

— BAZ010 Heating
— n-n H&!:::J; 3000
2850 | T_ === T = (1) RCBOHP 57kBiuh Gas R
e e 29| Toress Wh- (1) RTSLS Loy @ 180480 G e
wwn Hydronic Fumace - (1) AHB4S @@ 27 TkBiuh @ 120F 2700 | - Tankless WH - (1) V53i Value @ 150kBtuh Gas Rate
2,700 | —— Hydronic Fumace - (1) AHBTS @@ 61 6kBluh @ 140F 2550 [
2400 |
2550 22%
2400 2
1850
2250 E 1800 The highest DHW loads fall well below the maximum
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Figure 14. Thermostat cycling
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Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 15. Performance results
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Figure 21. Performance results
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Figure 22. Tankless DHW temperatures

Figure 23. Storage DHW temperatures
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Figure 24. Tankless supply air temperatures Figure 25. Storage supply air temperatures
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Figure 26. Tankless AH water temperatures Figure 27. Storage AH water temperatures
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Figure 32. Thermostat cycling Figure 33. Performance results
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Figure 38. Thermostat cycling
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Figure 37. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
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Water heater power consumed (Btu)
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Figure 39. Performance results
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Figure 40. Tankless DHW temperatures Figure 41. Storage DHW temperatures
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Figure 42. Tankless supply air temperatures
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Chicago, BA2010 Model, Rinnai Test With RC80HP/AHB90, January 5
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Figure 50. Thermostat cycling
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Figure 49. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 51. Performance results

601,833
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53.4
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650,499
639,376
31,010
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Figure 54. As-modeled DHW draws
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Figure 56. Thermostat cycling
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Figure 53. Actual space heating
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Figure 55. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)
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Actual daily DHW (gal/day)
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Water heater power consumed (Btu)
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Figure 57. Performance results
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37



U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Chicago, BA2010 Model, Rinnai Test With RC80HP/AHB90, December 3
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Figure 68. Thermostat cycling Figure 69. Performance results
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Figure 74. Thermostat cycling
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Figure 75. Performance results

386,192
464,986
106.2
119.1

1,015
997
546,137
536,799
20,635
143
428,246
62,345

87%
88%



Energy Efficiency &

T OF
EN ERGY Renewa ble Energy

Chicago, BA2010 Model, Tankless Versus Storage Temperature Stability,
December 3

140 140
ol "] N
132

124
1 2 T m
AL ! 116 A Jf*} . il \{!‘ Ll ‘
W ! £ A N1 N
i i.w “ ,‘h‘ | Ewa H I“. i - i e | ‘; -1““.‘
RN A AR AN ARANII R
i . "‘ fil i { 100 e R o \ ‘ ! Ll
AL A SRR & 5 e
R ' i l L] . RA TN W A
i | e e A & ! N A —-—
\ “" \ \ \ \ \ \ Y A\
\ I - \ N \ \ \ A\
] w0 NN S | AN
8:00:00 AM 12:00:00 PM 4:00:00 PM 8:00.00 P 12:00:00 AM 12:00:00 AM 4:00:00 AM 8:00:00 AM 12:00:00 PM 4 M 00:00 PM 12 M
Fig 76. Tankless DHW temperat Fig 77. Storage DHW temperatures
—sone —sone

|
| @ !
00 AM 1200:00PM 4:00:00 PM 80000 PM 12:00:00 AM 12:00:00 AM 40000 AM 800:00 AM 1200:00PM 4:00:00 PM 80000 PM 12:00:00 AM

|
l || ||
H I HI i ‘ |
A i
an supply air temperat Fig 79. Storage supply air temperatur

——

_____ ‘1‘ “
T’\\JWWW | ”W“]

t w { || {“ \\M ITHW i 1A M "M M\‘ W PMWUMW H
w;*mw nthi m}wmmmwmh mim i W ft Mﬂ} _m_ W HWWM

00:00 AM 80000 1200:00 AM 4.00:00 AM 80000 12:00:00 AM

—_.__,_._

_.——_v_"

—

Figure 80. Tankless AH water temperatur Figure 81. Storage AH water temperatur

40



U.5. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Chicago, BA2010 Model, Rinnai Test With RC80HP/AHB90, November 27

3000

2500

kBtu/min
i
8

1000

500 |
[+]

u DHW
W BA2010Heating

AirHandler Capacity

—Water Heater Capacity

Figure 82. As-modeled space/DHW loads
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Figure 84. As-modeled DHW draws
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Figure 86. Thermostat cycling
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Figure 85. Actual DHW draws
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Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 87. Performance results

547,236
609,804
47.0
46.2

1,015
997
620,159
609,555
29,412
178
585,895
19,053

93%
95%
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Chicago, BA2010 Model, Vertex Test With RC80HP/AHB90, November 27
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Figure 88. As-modeled space/DHW loads
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Figure 90. As-modeled DHW draws
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Figure 92. Thermostat cycling
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Figure 89. Actual space heating
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Figure 91. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 93. Performance results

547,236
610,887
47.0
52.2

1,015
997
642,889
631,896
26,485
164
584,221
24,531

91%
92%
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Figure 94. Tankless DHW temperatures
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Figure 96. Tankless supply air temperatures
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Figure 98. Tankless AH water temperatures
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Figure 95. Storage DHW temperatures
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Figure 97. Storage supply air temperatures
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Figure 99. Storage AH water temperatures

8:00:00 PM 12:00:00 AM

8:00:00 PM 12:00:00 AM



U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Chicago, BA2010 Model, Rinnai Test With RC80HP/AHB90, December 11
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Figure 100. As-modeled space/DHW loads
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Figure 102. As-modeled DHW draws
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Figure 104. Thermostat cycling
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Figure 101. Actual space heating
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Figure 103. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 105. Performance results

455,709
544,228
112.2
108.1

1,015
997
604,685
594,346
26,908
172
520,416
53,217

91%
92%
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Chicago, BA2010 Model, Vertex Test With RC80HP/AHB90, December 11
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Figure 106. As-modeled space/DHW loads
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Figure 108. As-modeled DHW draws
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Figure 110. Thermostat cycling
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Figure 107. Actual space heating
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Figure 109. Actual DHW draws

Total daily heat loss as modeled (Btu/day) 455,709
Actual heat loss applied (Btu/day) 534,080
Total daily DHW as modeled (gal/day) 112.2
Actual daily DHW (gal/day) 121.0
Gas heat value HHV (Btu/cf) 1,015
Gas heat value LHV (Btu/cf) 997
Gas consumed HHV (Btu) 609,429
Gas consumed LHV (Btu) 599,008
Combo Air Handler power consumed (Btu) 24,107
Water heater power consumed (Btu) 157
Space heating Energy (Btu) 498,267
DHW energy (Btu) 64,657
HHV System Efficiency 89%
LHV System Efficiency 90%

Figure 111. Performance results
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Chicago, BA2010 Model, Tankless Versus Storage Temperature Stability,
December 11
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Figure 114. Tankless supply air temperatures Figure 115. Storage supply air temperatur
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Figure 116. Tankless AH water temperatures Figure 117. Storage AH water temperatur
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U.S. DEPARTMENT OF Energy Eﬁiciency &

EN ERGY Renewable Energy

Chicago, BA2010 Model, Tankless Versus Storage Temperature Stability Detail,
December 11
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Chicago, BA2010 Model, Rinnai Test With RC80HP/AHB90, February 22
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Figure 122. As-modeled space/DHW loads
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Figure 124. As-modeled DHW draws
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Figure 126. Thermostat cycling
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Figure 123. Actual space heating

m Actual DHW

Figure 125. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 127. Performance results

290,388
338,738
64.7
97.8

1,015
997
393,196
386,473
16,389
119
295,795
47,069

84%
85%
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Chicago, BA2010 Model, Vertex Test With RC80HP/AHB90, February 22
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Figure 128. As-modeled space/DHW loads

5.0

m As Modeled

4.5

4.0

35

3.0

25

DHW Draws/hr

2.0

15

Figure 130. As-modeled DHW draws
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Figure 132. Thermostat cycling
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Figure 129. Actual space heating
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Figure 131. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 133. Performance results

290,388
306,218
64.7
108.8

1,015
997
378,382
371,912
13,062
103
255,490
62,456

81%
83%
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Chicago, BA2010 Model, Tankless Versus Storage Temperature Stability,

February 22
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Figure 134. Tankless DHW temperatures
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Figure 136. Tankless supply air temperatures
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Figure 138. Tankless AH water temperatures
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Figure 135. Storage DHW temperatures
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EN ERGY Renewable Energy

Energy Efficiency &

Chicago, BA2010 Model, Rinnai Test With RC80HP/AHB90, March 29
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Figure 140. As-modeled space/DHW loads
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Figure 142. As-modeled DHW draws
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Figure 144. Thermostat cycling
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Figure 141. Actual space heating
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Figure 143. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)

Water heater power consumed (Btu)
Space heating Energy (Btu)
DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 145. Performance results

207,316
338,050
138.7
139.7

1,015
997
416,534
409,412
16,655
126
298,147
70,261

85%
86%
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Chicago, BA2010 Model, Vertex Test With RC80HP/AHB90, March 29
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Figure 146. As-modeled space/DHW loads
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Figure 148. As-modeled DHW draws
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Figure 150. Thermostat cycling
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Figure 147. Actual space heating
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Figure 149. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)

Water heater power consumed (Btu)
Space heating Energy (Btu)
DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 151. Performance results

207,316
361,884
138.7
158.5

1,015
997
463,033
455,116
16,410
128
317,794
87,741

85%
86%



oooooooooooo Energy Efficiency &

EN ERGY Renewable Energy

Chicago, BA2010 Model, Tankless Versus Storage Temperature Stability,

March 29
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Figure 152. Tankless DHW temperatures Figure 153. Storage DHW temperatures
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Figure 154. Tankless supply air temperatures Figure 155. Storage supply air temperatures
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Figure 156. Tankless AH water temperatures Figure 157. Storage AH water temperatures
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U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Atlanta, BA2010 Model, Rinnai Test With RC80HP/AHB45, February 3
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Figure 158. As-modeled space/DHW loads
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Figure 160. As-modeled DHW draws
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Figure 162. Thermostat cycling
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Figure 161. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 163. Performance results

468,866
528,493
53.2
58.3

1,015
997
599,028
588,786
23,837
237
531,425
20,633

89%
90%
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Figure 164. As-modeled space/DHW loads
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Figure 166. As-modeled DHW draws
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Figure 165. Actual space heating
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Figure 167. Actual DHW draws

Total daily heat loss as modeled (Btu/day)

Actual heat loss applied (Btu/day)
Total daily DHW as modeled (gal/day)
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Figure 168. Thermostat cycling
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Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 169. Performance results
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468,866
538,676
53.2
62.3

1,015
997
618,891
608,309
21,709
223
539,743
27,639

89%
90%
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Figure 170. Tankless DHW temperatures
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Figure 172. Tankless supply air temperatures
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Figure 174. Tankless AH water temperatures
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Figure 171. Storage DHW temperatures
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Figure 175. Storage AH water temperatures
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Figure 176. As-modeled space/DHW loads
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Figure 178. As-modeled DHW draws
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Figure 180. Thermostat cycling
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Figure 177. Actual space heating
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Figure 179. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 181. Performance results

421,270
485,469
100.0
103.4

1,015
997
575,614
565,772
22,166
227
481,344
44,172

88%
89%
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Figure 184. As-modeled DHW draws
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Figure 182. As-modeled space/DHW loads
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Figure 186. Thermostat cycling
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Figure 185. Actual DHW draws
Total daily heat loss as modeled (Btu/day) 421,270
Actual heat loss applied (Btu/day) 491,210
Total daily DHW as modeled (gal/day) 100.0
Actual daily DHW (gal/day) 111.3
Gas heat value HHV (Btu/cf) 1,015
Gas heat value LHV (Btu/cf) 997
Gas consumed HHV (Btu) 596,086
Gas consumed LHV (Btu) 585,893
Combo Air Handler power consumed (Btu) 19,681
Water heater power consumed (Btu) 207
Space heating Energy (Btu) 484,352
DHW energy (Btu) 54,860
HHV System Efficiency 88%
LHV System Efficiency 89%

Figure 187. Performance results
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Figure 188. Tankless DHW temperatures
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Figure 190. Tankless supply air temperatures
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Figure 192. Tankless AH water temperatures
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Figure 189. Storage DHW temperatures
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Figure 191. Storage supply air temperatures
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Figure 193. Storage AH water temperatures
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Atlanta, BA2010 Model, Rinnai Test With RC80HP/AHB45, December 3
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Figure 194. As-modeled space/DHW loads
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Figure 198. Thermostat cycling
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Figure 195. Actual space heating
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Figure 197. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)
Total daily DHW as modeled (gal/day)
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Gas heat value HHV (Btu/cf)
Gas heat value LHV (Btu/cf)

Gas consu
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r Handler power consumed (Btu)

Water heater power consumed (Btu)
Space heating Energy (Btu)
DHW energy (Btu)
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Figure 199. Performance results

-

180,416
237,614
78.8
81.3

1,015

997
267,957
263,375

9,750
121
200,259
32,130

84%
85%
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Figure 200. As-modeled space/DHW loads
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Figure 202. As-modeled DHW draws
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Figure 204. Thermostat cycling
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Figure 201. Actual space heating
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Figure 203. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

180,416
266,762
78.8
83.9

1,015
997
313,821
308,455
9,926
124
235,355
37,216

84%
86%

Figure 205. Performance results
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Figure 206. Tankless DHW temperatures
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Figure 208. Tankless supply air temperatures
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Figure 207. Storage DHW temperatures
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Figure 209. Storage supply air temperatures
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Figure 210. Tankless AH water temperatures
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Figure 211. Storage AH water temperatures
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Atlanta, BA2010 Model, Tankless Versus Storage DHW Temperatures, December
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125 125
Tempered DHW
10 ~— City Supply Water 100 - E?J;Z(:;m:‘{gl
. Draw Contrel Oran Control
I3 - ] —
o R — NE— o . 1
£ E
] [
F F
50 50
% %
0 0
616:08 P 6:16:42 PM B:17:17 P 61751 PM 6:18:26PM 619,00 PM 61608PM  B1625PM  G1642PM  G1700PM  B1717PM  61734PM  B1751PM 61809 PN

Figure 214. Tankless 12-min DHW warm-up
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Figure 216. 12-min DHW draw comparison
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Figure 215. Storage 12-min DHW warm-up
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Figure 217. As-modeled space/DHW loads
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Figure 219. As-modeled DHW draws
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Figure 221. Thermostat cycling
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Figure 218. Actual space heating
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Figure 220. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 222. Performance results

305,440
400,602
39.5
41.0

1,015
997
424,449
417,192
17,853
187
364,343
14,840

86%
87%
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Figure 223. As-modeled space/DHW loads
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Figure 227. Thermostat cycling
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Figure 224. Actual space heating
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Figure 226. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency
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Figure 228. Performance results

305,440
411,699
39.5
45.8

1,015
997
453,951
446,189
15,905
173
379,813
21,347

85%
87%
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Figure 229. Tankless DHW temperatures

— Supply Ait
128 —I

1ZUUDDAM 4:00:00 AM 8.00:00 AM 12:00:00 PM 4:00:00 PM 8:00:00 PM

Figure 230. Storage DHW temperatures
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Figure 231. Tankless supply air temperatures

Figure 232. Storage supply air temperatures
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Figure 233. Tankless AH water temperatures Figure 234. Storage AH water temperatures
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Figure 235. As-modeled space/DHW loads
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Figure 237. As-modeled DHW draws

e — ClgSP

e

oty

0

1200

00AM

=

_

1200:00 PM 400:00 PU S0000PN

B.00:00 AN

400:00 AN

Figure 239. Thermostat cycling
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Figure 236. Actual space heating
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Figure 238. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 240. Performance results

340,796
309,081
104.3
71.6

1,015
997
335,206
329,475
14,582
107
282,817
22,628

87%
89%
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Atlanta, Vintage Model, Vertex Test With RC80HP/AHB90, April 6
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Figure 241. As-modeled space/DHW loads
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Figure 243. As-modeled DHW draws
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Figure 245. Thermostat cycling
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Figure 244. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 246. Performance results

340,796
295,182
104.3
75.2

1,015
997
347,383
341,443
12,667
99
269,225
28,807

83%
84%



U.5. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Atlanta, Vintage Model, Tankless Versus Storage Temperature Stability, April 6
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Figure 247. Tankless DHW temperatures
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Figure 249. Tankless supply air temperatures
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Figure 251. Tankless AH water temperatures
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Figure 248. Storage DHW temperatures

Figure 250. Storage supply air temperatures
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Figure 252. Storage AH water temperatures
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Atlanta, Vintage Model, Rinnai Test With RC80HP/AHB90, March 23

3000

2500

= DHW
m Vintage Heating

2000

1500

kBtu/min

Air Handler Capacity
—Water Heater Capacity

Figure 253. As-modeled space/DHW loads
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Figure 255. As-modeled DHW draws
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Figure 257. Thermostat cycling
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Figure 256. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 258. Performance results

238,858
236,894
71.2
74.3

1,015
997
265,369
260,832
10,875
95
210,500
25,645

85%
87%
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Atlanta, Vintage Model, Vertex Test With RC80HP/AHB90, March 23
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Figure 259. As-modeled space/DHW loads
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Figure 261. As-modeled DHW draws
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Figure 263. Thermostat cycling
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Figure 260. Actual space heating
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Figure 262. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 264. Performance results

238,858
271,582
71.2
75.1

1,015
997
307,556
302,297
11,185
99
234,348
31,058

83%
85%
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Atlanta, Vintage Model, Tankless Versus Storage Temperature Stability, March 23
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Figure 265. Tankless DHW temperatures
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Figure 267. Tankless supply air temperatures
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Figure 269. Tankless AH water temperatures
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Figure 266. Storage DHW temperatures

130
o]
126
124
122
120
18
16
114
12
10
108
106
104
102

100
12:00:00 AM

Temp (F)

4:00:00 AM

8.00:00 AM 12:00:00 PM 400:00 PM 6:00:00 PM 12:00:00 AM

Figure 268. Storage supply air temperatures
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Figure 270. Storage AH water temperatures
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EN ERGY Renewable Energy

Houston, BA2010 Model, Rinnai Test With RC80HP/AHB45, February 11
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Figure 271. As-modeled space/DHW loads Figure 272. Actual space heating
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Figure 273. As-modeled DHW draws .
g Figure 274. Actual DHW draws
0 - Total daily heat loss as modeled (Btu/day) 383,314
— ity Actual heat loss applied (Btu/day) 469,495
Total daily DHW as modeled (gal/day) 77.5
Actual daily DHW (gal/day) 79.7
600
llm.‘ “mmn“m’ mmn I I i bl F Gas heat value HHV (Btu/cf) 1,015
AL M Gas heat value LHV (Btu/cf) 997
£ il i | I i Gas consumed HHV (Btu) 544,539
g 1 Il Gas consumed LHV (Btu) 535,228
I H Combo Air Handler power consumed (Btu) 21,817
i Water heater power consumed (Btu) 223
m i T i Space heating Energy (Btu) 468,237
i DHW energy (Btu) 24,240
| J HHV System Efficiency 87%
200 AN e S0 RWHA wnop £a10PU " moom LHV System Efficiency 88%

Figure 275. Thermostat cycling Figure 276. Performance results
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Houston, BA2010 Model, Vertex Test With RC80HP/AHB45, February 11
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Figure 277. As-modeled space/DHW loads
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Figure 279. As-modeled DHW draws
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Figure 281. Thermostat cycling
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Figure 278. Actual space heating
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Figure 280. Actual DHW draws

Total daily heat loss as modeled (Btu/day) 383,314
Actual heat loss applied (Btu/day) 474,407
Total daily DHW as modeled (gal/day) 77.5
Actual daily DHW (gal/day) 82.9
Gas heat value HHV (Btu/cf) 1,015
Gas heat value LHV (Btu/cf) 997
Gas consumed HHV (Btu) 566,406
Gas consumed LHV (Btu) 556,721
Combo Air Handler power consumed (Btu) 18,913
Water heater power consumed (Btu) 204
Space heating Energy (Btu) 471,160
DHW energy (Btu) 33,824
HHV System Efficiency 86%
LHV System Efficiency 88%

Figure 282. Performance results
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EN ERGY Renewable Energy

Houston, BA2010 Model, Tankless Versus Storage Temperature Stability,

February 11
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Figure 283. Tankless DHW temperatures
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Figure 285. Tankless supply air temperatures
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Figure 287. Tankless AH water temperatures
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Figure 284. Storage DHW temperatures
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Figure 286. Storage supply air temperatures
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U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Houston, BA2010 Model, Rinnai Test With RC80HP/AHB45, January 11
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Figure 289. As-modeled space/DHW loads Figure 290. Actual space heating
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Figure 291. As-modeled DHW draws Figure 292. Actual DHW draws
L - Total daily heat loss as modeled (Btu/day) 217,373
— At ' Actual heat loss applied (Btu/day) 297,513
a | lw | | Total daily DHW as modeled (gal/day) 50.2
’ Actual daily DHW (gal/day) 53.9
o Gas heat value HHV (Btu/cf) 1,015
Gas heat value LHV (Btu/cf) 997
£y tHm Gas consumed HHV (Btu) 318,387
E [ Gas consumed LHV (Btu) 312,943
Il Combo Air Handler power consumed (Btu) 12,525
L Il Water heater power consumed (Btu) 149
i Space heating Energy (Btu) 258,691
wll | Il DHW energy (Btu) 15,919
1 HHV System Efficiency 83%
o o £0000A 200FU £a00PH £0100PI 2000 A LHV System Efficiency 84%
Figure 293. Thermostat cycling Figure 294. Performance results
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Figure 295. As-modeled space/DHW loads
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Figure 299. Thermostat cycling
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RC80HP/AHB45, January 11
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Figure 296. Actual space heating
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Figure 298. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 300. Performance results

217,373
304,799
50.2
55.5

1,015
997
346,977
341,044
11,473
145
269,511
21,671

81%
83%
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Figure 301. Tankless DHW temperatures

130

— Supply A

128
126
124
122
120
18
116
114
12
1
108
106
104
102

i

12:00:00 AM 400:00 AW 8:00:00 At

Temp (F)

=

| 7”

120000PM 40000 PM 8:00:00 PM 12:00:00 Al

Figure 303. Tankless supply air temperatures
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Figure 305. Tankless AH water temperatures
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Figure 302. Storage DHW temperatures
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Figure 304. Storage supply air temperatures
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Figure 306. Storage AH water temperatures
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Houston, BA2010 Model, Rinnai Test With RC80HP/AHB45, December 9
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Figure 307. As-modeled space/DHW loads
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Figure 311. Thermostat cycling
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Figure 308. Actual space heating
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Figure 310. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)

Water heater power consumed (Btu)
Space heating Energy (Btu)
DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 312. Performance results

91,112
186,130
74.0
76.9

1,015
997
206,086
202,562
7,957
108
134,961
28,321

76%
78%
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Figure 313. As-modeled space/DHW loads

25

m As Mcdeled

=
in

DHW Draws (gpm)
-
=1

0.5

i
Figure 315. As-modeled DHW draws
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Figure 317. Thermostat cycling
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Figure 316. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 318. Performance results
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176,746
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211,184
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6,362
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122,525
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Figure 319. Tankless DHW temperatures
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Figure 321. Tankless supply air temperatures

160 1
| — 1 Retuem et
156 | — Swwwm]

Lt “‘{

it Wi L!'IUHM’H i

Il w'\"**hnn‘ N i

E:00:00 AM 12:00:00 PM 40000 PN 80000 PH

IllillilHI.

| Hlllaih |

I

40000 AM

i Mus

n”"] |

12:00:00 AM

12:00:00 AM

Figure 323. Tankless AH water temperatures
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Figure 320. Storage DHW temperatures
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Figure 322. Storage supply air temperatures
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Figure 324. Storage AH water temperatures
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Figure 325. As-modeled space/DHW loads
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Figure 327. As-modeled DHW draws

0.00

1000
Tl ¢
— ActHlg

—11 T

T [

[}
1200

00 AM 40000 A1 800.00 A0 120000 PM 400:00PU 80000 P

Figure 329. Thermostat cycling
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Figure 328. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed {Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 330. Performance results

32,283
47,335
18.9
12.3

1,015
997
44,139
43,385
1,821
35
29,717
2,223
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Figure 335. Thermostat cycling

120000 A

83

kBtu fhr

1.50

125

1.00

0.75

025

0.00

180,000

150,000

120,000

90,000

60,000

30,000

[v]

M Actual Cocling

mm Actual Heating
AirHandler Capacity

—Water Heater Capacity

Figure 332. Actual space heating

= Actual DHW

i

Figure 334. Actual DHW draws

Total daily heat loss as modeled (Btu/day)
Actual heat loss applied (Btu/day)

Total daily DHW as modeled (gal/day)
Actual daily DHW (gal/day)

Gas heat value HHV (Btu/cf)

Gas heat value LHV (Btu/cf)

Gas consumed HHV (Btu)

Gas consumed LHV (Btu)

Combo Air Handler power consumed (Btu)
Water heater power consumed (Btu)
Space heating Energy (Btu)

DHW energy (Btu)

HHV System Efficiency
LHV System Efficiency

Figure 336. Performance results

32,283
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67,579
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Figure 337. Tankless DHW temperatures
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Figure 339. Tankless supply air temperatures
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Figure 341. Tankless AH water temperatures
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Figure 338. Storage DHW temperatures
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Figure 340. Storage supply air temperatures
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Figure 342. Storage AH water temperatures
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