Residential Water Heater Test Procedures: Why You Should Care

Jay Burch
National Renewable Energy Laboratory
I. Background
II. Current Test: Simulated use
III. Using test results in models
IV. A few pitfalls
V. Proposed new test: Input-output
VI. Appendix: Model calibration
I. Background

Building America Program:

• Domestic water heating:
 – 13% of residential source energy
 – Percentage of load increases with envelope/HVAC efficiency
 – Options: storage tank: gas/elec; tankless, condensing, heat pumps, solar

• Water Heater (WH) options analysis
 – Teams compare and recommend products
 – Currently, test results apply only to the test use volume/patterns
 – Realistic/BA draws very different from the test
 – Need to simulate under BA conditions

• Problem: deriving simulation inputs from WH test data
II. Current Water Heater Test

Doe Standard Test conditions:

- One day duration
- 64.3 gal draw (> average?)
- 6 equal draws 1 hr apart
- Same draw for all sizes
- $T_{set} = 135 \, ^\circ F$
- $T_{in} = 58 \, ^\circ F$
- $T_{env} = 67.5 \, ^\circ F$

- Correction made for stored energy change over cycle:
 \[\delta E_{store} = C_{store} \delta T_{store,avg} \]
Standard vs. Realistic Draws

Draws: Volume vs. Time

- **Doe Standard Test**
- **Realistic Draws**

- **Y-axis**: Draw Volume [Gal]
- **X-axis**: Time [hr]

Residential Energy Efficiency Meeting 2010
Test results

- **Energy Factor:** \(EF_{\text{std-test}} = \frac{E_{\text{out,day}}}{E_{\text{aux,day}}} \) (\(E = \text{energy} \))
 - \(E_{\text{out,day}} = M_{\text{draw}}c_p\Delta T_{\text{out-in}} = 41,092 \text{ Btu/day} \)
 - \(E_{\text{aux,day}} = \text{auxiliary energy used over the day} \)

- **Recovery Efficiency:** \(RE_{\text{gas}} = \frac{E_{\text{out,dr}}}{E_{\text{aux,dr}}} \)
 - \(E_{\text{out,dr}} = \text{energy withdrawn in one 10.6 gal draw} \)
 - \(E_{\text{aux,dr}} = \text{energy input recovering from that draw} \)
 - Lower than conversion efficiency because of tank losses
 - \(RE_{\text{elec}} \approx .98 \) for all tanks (by fiat)

- **Input power:** \(P_{\text{aux}} = \) measured auxiliary input

- Measured \(V_{\text{st}}, U_{\text{st}} \) not reported: change?
Energy Factor Uncertainty

- **Energy Factor:** $EF_{std-test} = \pm \sim .01-.02$ (Lutz ~ 1999)
 - Dominant error: $T_{store,avg}$ as avg. of six point sensors
 - Used in stored energy correction: $\delta E_{store} = C_{store} \delta T_{store,avg}$
 - Bottom sensor near or in thermocline at bottom element in electric tanks

- Compare $\pm \sim .02$ to min-max range $\sim .89 - \sim .96$ for electric WH
III. Tank Models

• Algebraic Models
 – Time-integrated energy balance:
 – \(E_{aux} = draws + losses = M_c \Delta T_{set-in} + UA \Delta T_{set-env} \Delta t_{period} \)
 – E.g.: WATSMPL

• 1 Dimensional finite difference
 • Account for stratification, draw and heat source dynamics,
 • Still simple: appropriate for annual simulations
 • E.g.: TRNSYS

• 2-3 Dimensional finite element (CFD)
 • \(T, v \) fields; hardware design tools
 • Slow: inappropriate for annual simulations
Electric Tank

\[\eta_{\text{conv}} \equiv 1 \]

Electric elements

Skin insulation

Thermal shorts

Volume

Height of element

Residential Energy Efficiency Meeting 2010
Gas Tank

- Gas Tank
- Additional inputs
 - U_A_{flue}
 - η_{conv}
- Gas Burner/pilot
- Central flue
- Convection loop

Residential Energy Efficiency Meeting 2010
Key parameter: Conversion Efficiency

• Conversion efficiency: \(\eta_{\text{conv}} = \frac{P_{\text{to-water}}}{P_{\text{aux-in}}} \) (\(P = \)power)
 - \(P_{\text{to-water}} = C_{\text{tank}}(dT_{\text{tank,avg}}/dt) \) only when \(T_{\text{tank,avg}} = T_{\text{env}} \)
 - Tank losses are NOT to be included
 - RE includes tank losses during the recovery period

• For ELECTRIC: \(\eta_{\text{conv}} = 1 \)
• For GAS: \(\eta_{\text{conv}} \) must be calculated from RE, UA
Inputs from Test Data

Electric tank:

\[
UA_{t,\text{elec}} = \frac{Q_{\text{out,day}}(1/EF-1)}{[(\Delta T_{t-env}\Delta t_{day})(f_{\text{above}} - f_{\text{below}} \frac{\Delta T_{in-env}}{\Delta T_{set-env}})]}
\]

\[\eta_{\text{conv}} \equiv 1\]

Gas tank:

\[
UA_{t,\text{gas}} = \frac{(RE/EF-1)}{[\Delta T_{set-env}(\Delta t_{day}/Q_{\text{out,day}}-1/(P_{aux} \cdot EF)))]}
\]

\[\eta_{\text{conv}} = RE + UA_{t,\text{gas}}(\Delta T_{set-env})/P_{aux}\]

\[\eta_{\text{conv}} = \sim RE + .01-.02\]
Spreadsheet Tool

Implements input formulae derivation, with paper on method

<table>
<thead>
<tr>
<th>Calculation of TRNSYS inputs from DOE test/AHRI data</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Input</td>
</tr>
<tr>
<td>Derived/constant</td>
</tr>
<tr>
<td>Calcd TRNSYS Input</td>
</tr>
</tbody>
</table>

| **Known values from DOE test** |
| WH type ("gas" or "electric" only) |
| Electric |
| Energy factor (EF) |
| 0.92 |
| RE NOT USED for electric |
| 0.8 |
| Rated input power (Pin) |
| 15.354 |

| **Standard DOE test conditions & constants** |
| Volume drawn |
| 64.3 gal/day |
| Ttank |
| 135 F |
| Tin |
| 58 F |
| Tenv |
| 67.5 F |
| Qload |
| 41092 Btu/day |
| Density |
| 8.2938 lb/gal |
| Cp |
| 1.0007 |
| Draw mass (M) |
| 533.3 lb |

| **Geometry** |
| Height |
| 44.75 inches |
| Height of lower element |
| 0.01 inches |
| Nominal Volume |
| 42 US gallons |
| Assumed = Nominal Volume? |
| no US gallons |
| Assumed Volume |
| 38.2 US gallons |
| Diameter |
| 15.840 inches |
| Surface Area - British |
| 18.201 ft² |
| Surface Area - SI |
| 1.691 m² |
| Area below lower element - British |
| 1.372 ft² |
| Area above lower element - British |
| 16.829 ft² |
| Area below lower element - SI |
| 0.127 m² |
| Area above lower element - SI |
| 1.563 m² |

| **TRNSYS Inputs** |
| Height |
| 1.137 m |
| Volume |
| 0.145 m³ |
| U stdby-TRNSYS units |
| 2.710 kJ/hr-m²-C |
| Input Capacity |
| 16.198 kJ/hr |
| Number of Nodes |
| 10 - |
| UA/TRNSYS |
| 4.583 kJ/hr-C |

| **Comparison to Nominal UA-skin** |
| Insulation R-english/inch (nominal) |
| 5.00 hr-4°F/Btu-in |
| Insul Thickness (nominal) |
| 2.00 inches |
| U-skin (nominal) |
| 0.100 Btu/hr-4°F |
| UA-skin (nominal) |
| 1.820 Btu/hr-4°F |
| UA stdy / UA-skin (nominal) |
| 1.33 - |
| Consistency check |
| EF=Qload/(Qload+Qloss)/n_c |
| 0.920 - |

Residential Energy Efficiency Meeting 2010
Common Blunders:

• RE is not equal to η_{conv}
 • η_{conv} is the model input for efficiency, not RE

• EF is not η_{conv}
 • $E_{\text{auxiliary}} = E_{\text{thermal}}/\eta_{\text{conv}}$ is correct
 • $E_{\text{auxiliary}} = E_{\text{thermal}}/EF$ is wrong
• $\frac{\delta U}{U} = EF \frac{\delta (EF)}{1 - EF}$

Error in U value vs. EF

Bad news for electric

$\delta (EF) = .02$
Sensitivity to unheated volume
(in electric tanks only)

Inferred U value (Btu/hr-ft²-F)

Unheated Volume (gallons)

Element at 10 inch
V. New Test Method: Input/Output

Residential Energy Efficiency Meeting 2010

From T. Butcher
ASHRAE2010
Model Inputs from I/O

Slope of line:
\[\eta_{\text{conv}} = \frac{1}{\text{slope}} \]

Y-intercept:
\[UA = \frac{P_{\text{input-nodraw}}}{\Delta T_{\text{tank-env}}} \]
Input-Output Validation

Low Rate of Use

High Rate of Use

\[y = 1.2857x + 750.14 \]

Efficiency (total output / total input) = 58.1%

From J. Lutz
ASHRAE2010
I/O Method Validation

Tankless water heater

\[y = 1.0735x + 211.95 \]

\[R^2 = 0.999 \]
I/O Method Advantages

- Allows any use profile
 - Get P_{out}, $P_{in} = m \cdot P_{out} + b$
- UA, η_{conv} error should decrease
- Applies to tank water heaters and tankless (some issues)

- But: Heat pump water heaters? Condensing?
Conclusions

• Current test method: simulated use test
 • Methods for input parameters laid out
 • Uncertainty in U value large for higher EFs

• Future test method: Input-Output test
 • Under development: 1-2 years from now?
 • Major changes for heat pumps?
 • Reduction in parameter uncertainty
Thank you for listening.

Questions?

Time Allowing:
Model calibration tests and tankless
Model-based:
Test \implies Calibrate \implies Rate

Real Water Heater
\implies Test Protocol
\implies Test Data
\implies Generic Model
\implies Calibrated Model

Any rating conditions
\implies Calibrated Model
\implies Rating

Residential Energy Efficiency Meeting 2010
Losses between draws demand modeling of internal mass and losses to ambient
Tankless Thermal Model

This model has three parameters

- T_{env}
- $\dot{m}c_p (T_{out} - T_{in})$
- $N_{hx nodes}$
- $Q_{gas,in}$
- C_{TWH}
- η_{conv}

Measured value

Model Parameter
Example Test Protocol

Temperatures
- Temperatures Decay with heat off: capacitance signal

Steady state burn: efficiency signal

Flow rates
- Inlet water
- Outlet water
- Natural Gas

Hot in, low flow $\Rightarrow \Delta T_{hx}$: UA signal

Residential Energy Efficiency Meeting 2010
Draw net efficiency is sensitive to:

- Delay between draws
- Length of draw
A Tale of Two Draw Patterns

Building America 2 Bdrm benchmark
64 gal/day, 30 draws

Net Efficiency: 77%

Building America 2 Bdrm low use
22 gal/day, 12 draws

Net Efficiency: 65%

Tankless efficiency from DOE test is 0.80
Range of Inputs for Given Output?

Gas-fired storage and tankless heaters tested are tested with hour-long draw profiles of equal output.

Varying degrees of draw volume, draw rate, and standby period

Draw #1
- Duration: 12 minutes
- Volume: 20 gallons
- GPM: 2.0

Draw #2
- Duration: 12 minutes
- Volume: 2 gallons
- GPM: 1.0

Draw #3
- Duration: 24 minutes
- Volume: 0.5 gallons
- GPM: 1.0

Draw #4
- Duration: 60 minutes
- Volume: 10 gallons
- GPM: 3.0

Extended Standby
I/O validation: tankless

Range of Inputs for Given Output?

Gas-fired Non-condensing Tankless

From Low and High Use testing:
a = 1.163 and b = 96.9

<table>
<thead>
<tr>
<th></th>
<th>Draw 1</th>
<th>Draw 2</th>
<th>Draw 3</th>
<th>Draw 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Rate Measured (Btu/hr)</td>
<td>11,941</td>
<td>11,628</td>
<td>11,702</td>
<td>12,241</td>
</tr>
<tr>
<td>Input Rate Measured (Btu/hr)</td>
<td>13,744</td>
<td>13,497</td>
<td>13,570</td>
<td>14,857</td>
</tr>
<tr>
<td>Input Rate Calculated (Btu/hr)</td>
<td>13,979</td>
<td>13,615</td>
<td>13,701</td>
<td>14,329</td>
</tr>
</tbody>
</table>

Consistent slight underprediction of performance for Draws 1 – 3
Large departure in Draw 4 (large standby between draws)

From P. Glanville, ASHRAE2010
Tankless Conclusions

• Current test method:
 • Badly overestimates performance (6 big draws)

• Proposed I/O method:
 • \(\sim 3\% \) underprediction with draws having long delays
 • Can eliminate error
 • Appears acceptably-accurate

• Potential model-based method:
 • Accommodates any draw patterns/delays
 • Simplest possible test, but complex analysis
 • Demands that generic model exists