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 BIPV/T collectors combine thermal and electrical 
collection into a single unit
 Smaller overall rooftop area
 Incremental cost can be low
 Heat collection can increase electrical performance
 Building integration reduces cost by replacing materials

 Applications:
 Domestic hot water (DHW)
 Hydronic or air space heating
 Ventilation air pre-heat
 Heat pump assist
 Night cooling 



 Air Collector
 Outdoor air drawn behind 

PV modules
 Glazed air collector gives 

final thermal boost
 Liquid Retrofit
 Water/glycol circulated in 

finned tubes mounted on 
roof behind PV modules

 Liquid Mat Prototype
 EPDM tube mat attached 

to back of PV



 Air Collector

 Liquid Retrofit

 Liquid Mat Prototype
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 Air PV/T Collector with Thermal Boost
 Begin by drawing outdoor air behind PV modules
 Final thermal boost with glazed air solar collector
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 Detailed first-
principles models

 Implemented in 
MATLAB or TRNSYS
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 Testing performed by 
manufacturer in 2006
 PV/T only
 PV/T with boost

 Model validated with 
test data

 Model used for annual 
energy analysis



 Testing on 2007 
Colorado Solar 
Decathlon house
 Heat collection
 Heat rejection

 Model validated with 
test data

 Model used for 
parametric analysis



 Testing on prototype 
product
 ASHRAE student project
 Proof of concept

 Preliminary 
performance



 Baseline: 4 kW roof 
mounted PV system

 Add PV/T
 Add glazed thermal 

collectors by removing 
PV (area constrained)

 Site and source energy
 DHW
 Space heating
 Night cooling

 Seven climates



 Typical daily operating 
profiles – January and 
July

 Control fan speed to 
maintain leaving 
temperature setpoint

 Leaving temperature 
setpoint depends on 
outdoor air temperature

 Pump operates to 
preheat DHW

Albuquerque



 Evaluate alternative collector 
configurations

 Increasing glazed thermal boost 
area yields higher thermal energy 
and lower electricity production

Simulation
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PV Baseline 32 0 5.7 5.20 0.00
100% PV 32 0 5.7 5.20 0.00
87.5% PV 28 4 5.7 4.55 0.65
75.0% PV 24 8 5.7 3.90 1.30
62.5% PV 20 12 5.7 3.25 1.95
50.0% PV 16 16 5.7 2.60 2.60
37.5% PV 12 20 5.7 1.95 3.25
25.0% PV 8 24 5.7 1.30 3.90
12.5% PV 4 28 5.7 0.54 4.55
0.00% PV 0 32 5.7 0.00 5.20

-20%

0%

20%

40%

60%

80%

100%

Baseline PV 
Baseline

100%PV 87.5%PV 75.0%PV 62.5%PV 50.0%PV 37.5%PV 25.0%PV 12.5%PV 0.0%PV

A
nn

ua
l S

ou
rc

e 
En

er
gy

 S
ol

ar
 F

ra
ct

io
n

Collector Type Ratio

Total Electricity DHW Space Heating Space Cooling

Albuquerque



 Increased glazing area gives 
higher collector efficiency, but 
lower system efficiency

 Net thermal efficiency near 5%
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 Evaluate alternative collector 
configurations

 Minimum source energy with 
no glazed thermal boost
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 Seven climates
 Energy costs based on 

2008 state averages
 Area constrained to 

size of 4 kW PV system
 Minimum source 

energy achieved with 
all PV/T – no thermal 
boost



 Parametric analysis of 
liquid collector with air 
gap between PV and 
fluid channels

 Collector thermal 
efficiency depends on 
wind speed

 Combined efficiency 
boosted by thermal 
performance



 Eliminating air gap increases efficiency by 2.5x
 Gap doesn’t affect minimum radiation level to 

produce heat

10 cm (4 in) air gap

No air gap



 DHW offers greater opportunities than space 
heating or night cooling

 PV/T gives relatively low thermal efficiency, but 
large area can result in solar fractions equivalent 
to traditional flat-plate collector

 Air system allows simple collector, but require 
fan and coil to deliver DHW

 Liquid system cannot be simply bonded to PV 
without compromising UL certification

 Increase in electrical efficiency modest (<5% at 
high insolation)



 Air PV/T
 Simple collector, but complicated system
 Additional fan and ducting costs compared to conventional 

SDHW system
 Lower efficiency due to air-to-liquid heat exchanger

 Liquid PV/T
 Simple system, but complicated or very low-efficiency collector
 High thermal performance suggests integrated collector with 

separate UL certification
 Requires modularity with quick plumbing connection
 Freeze protection in cold climates

 Few products, limited experience
 Installation involves multiple trade
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