Residential Building Energy Efficiency Meeting 2010 Denver, CO July 20-22, 2010

Modeling, Testing, and Evaluation of Building-Integrated Photovoltaic-Thermal Collectors

Michael J. Brandemuehl, Ph.D., P.E. Civil, Environmental, and Architectural Engineering University of Colorado Boulder, CO 80309-0428

Acknowledgments

- University of Colorado
 - Ross Casey
 - Chad Corbin
 - Noble Lilliestierna
 - James Zdrowski
 - John Zhai
- NREL
 - Jay Burch
 - Tim Merrigan
- PVT Solar
- DOE
- ASHRAE

Outline

- Introduction
 - Overview of BIPV/T
 - PV/T Systems Evaluated
 - Modeling
- Experimental Testing
 - Air Collector
 - Liquid Collector
 - Proof-of-Concept Prototype
- Simulation Results
 - Air Collector
 - Liquid Collector
- Conclusions
 - Observations
 - Gaps and Barriers

Introduction Overview of BIPV/T

- BIPV/T collectors combine thermal and electrical collection into a single unit
 - Smaller overall rooftop area
 - Incremental cost can be low
 - Heat collection can increase electrical performance
 - Building integration reduces cost by replacing materials
- Applications:
 - Domestic hot water (DHW)
 - Hydronic or air space heating
 - Ventilation air pre-heat
 - Heat pump assist
 - Night cooling

Introduction PV/T Systems Evaluated

- Air Collector
 - Outdoor air drawn behind PV modules
 - Glazed air collector gives final thermal boost
- Liquid Retrofit
 - Water/glycol circulated in finned tubes mounted on roof behind PV modules
- Liquid Mat Prototype
 - EPDM tube mat attached to back of PV

Introduction PV/T Systems Evaluated

Solar Radiation Thermal Losses **Transparent Glass Cover** Air Collector PV Cells Electricity **PV Backer Material** Thermal Energy Air Channel Back Material, Insulation, Roof, etc. Thermal Losses Solar Radiation Thermal Losses Liquid Retrofit Transparent Glass Cover **PV** Cells Electricity **PV Backer Material** Air Gap --> Thermal Energy Liquid Channel Back Material, Insulation, Roof, etc. Thermal Losses Solar Radiation Liquid Mat Prototype Thermal Losses **Transparent Glass Cover PV** Cells Electricity **PV Backer Material** Thermal Energy Liquid Channel Air Gap Back Material, Insulation, Roof, etc. Thermal Losses

Introduction PV/T Systems Evaluated

- Air PV/T Collector with Thermal Boost
 - Begin by drawing outdoor air behind PV modules
 - Final thermal boost with glazed air solar collector

Introduction Modeling

- Detailed firstprinciples models
- Implemented in MATLAB or TRNSYS

Experimental Testing Air PV/T with Thermal Boost

- Testing performed by manufacturer in 2006
 - PV/T only
 - PV/T with boost
- Model validated with test data
- Model used for annual energy analysis

Experimental Testing Liquid Retrofit PV/T

- Testing on 2007
 Colorado Solar
 Decathlon house
 - Heat collection
 - Heat rejection
- Model validated with test data
- Model used for parametric analysis

Experimental Testing Liquid Mat Prototype

- Testing on prototype product
 - ASHRAE student project
 - Proof of concept
- Preliminary performance

- Baseline: 4 kW roof mounted PV system
- Add PV/T
- Add glazed thermal collectors by removing PV (area constrained)
- Site and source energy
 - DHW
 - Space heating
 - Night cooling
- Seven climates

PART	DESCRIPTION
В	Fan / Blower
CD	Common Duct
EH	Electric Element Heater
FĆ	Hydronic Fan Coil
FD	Flexible Connection Duct
HD	Header Duct
MD	Motorized Damper
MX	Mixing Valve
P	Pump
S	Temperature Sensor
\$T	Water Storage Tank

- Typical daily operating profiles – January and July
- Control fan speed to maintain leaving temperature setpoint
- Leaving temperature setpoint depends on outdoor air temperature
- Pump operates to preheat DHW

- Evaluate alternative collector configurations
- Increasing glazed thermal boost area yields higher thermal energy and lower electricity production

Simulation	PV Mo dul es	Glazed Modules	Array Width (m)	PV Length (m)	Glazed Length (m)
PV Baseline	32	0	5.7	5.20	0.00
100% PV	32	0	5.7	5.20	0.00
87.5% PV	28	4	5.7	4.55	0.65
75.0% PV	24	8	5.7	3.90	1.30
62.5% PV	20	12	5.7	3.25	1.95
50.0% PV	16	16	5.7	2.60	2.60
37.5% PV	12	20	5.7	1.95	3.25
25.0% PV	8	24	5.7	1.30	3.90
12.5% PV	4	28	5.7	0.54	4.55
0.00% PV	0	32	5.7	0.00	5.20

- Increased glazing area gives higher collector efficiency, but lower system efficiency
- Net thermal efficiency near 5%

Simulation	PV Mo dul es	Glazed Modules	Array Width (m)	PV Length (m)	Glazed Length (m)
PV Baseline	32	0	5.7	5.20	0.00
100% PV	32	0	5.7	5.20	0.00
87.5% PV	28	4	5.7	4.55	0.65
75.0% PV	24	8	5.7	3.90	1.30
62.5% PV	20	12	5.7	3.25	1.95
50.0% PV	16	16	5.7	2.60	2.60
37.5% PV	12	20	5.7	1.95	3.25
25.0% PV	8	24	5.7	1.30	3.90
12.5% PV	4	28	5.7	0.54	4.55
0.00% PV	0	32	5.7	0.00	5.20

- Evaluate alternative collector configurations
- Minimum source energy with no glazed thermal boost

Simulation	PV Mo dul es	Glazed Modules	Array Width (m)	PV Length (m)	Glazed Length (m)
PV Baseline	32	0	5.7	5.20	0.00
100% PV	32	0	5.7	5.20	0.00
87.5% PV	28	4	5.7	4.55	0.65
75.0% PV	24	8	5.7	3.90	1.30
62.5% PV	20	12	5.7	3.25	1.95
50.0% PV	16	16	5.7	2.60	2.60
37.5% PV	12	20	5.7	1.95	3.25
25.0% PV	8	24	5.7	1.30	3.90
12.5% PV	4	28	5.7	0.54	4.55
0.00% PV	0	32	5.7	0.00	5.20

- Seven climates
- Energy costs based on 2008 state averages
- Area constrained to size of 4 kW PV system
- Minimum source energy achieved with all PV/T – no thermal boost

City	Maximum Site Ratio	Annual Useful Site Energy (MMBtu)	Maximum Source Ratio	Annual Useful Source Energy (MMBtu)	Maximum Cost Ratio	Annual Energy Cost Savings
Albuquerque	87.5%PV	29.77	100%PV	80.36	100%PV	\$707
San Francisco	87.5%PV	24.41	100%PV	67.81	100%PV	\$839
Chicago	87.5%PV	20.64	100%PV	57.68	100%PV	\$548
Fargo	87.5%PV	21.30	100%PV	60.26	100%PV	\$399
Atlanta	100%PV	22.91	100%PV	64.67	100%PV	\$603
Tampa	100%PV	22.63	100%PV	76.13	100%PV	\$754
Phoenix	100%PV	27.08	100%PV	91.13	100%PV	\$807

Simulation Results Liquid PV/T Retrofit

- Parametric analysis of liquid collector with air gap between PV and fluid channels
- Collector thermal efficiency depends on wind speed
- Combined efficiency boosted by thermal performance

Simulation Results Liquid PV/T Retrofit

- Eliminating air gap increases efficiency by 2.5x
- Gap doesn't affect minimum radiation level to produce heat

Conclusions Observations

- DHW offers greater opportunities than space heating or night cooling
- PV/T gives relatively low thermal efficiency, but large area can result in solar fractions equivalent to traditional flat-plate collector
- Air system allows simple collector, but require fan and coil to deliver DHW
- Liquid system cannot be simply bonded to PV without compromising UL certification
- Increase in electrical efficiency modest (<5% at high insolation)

Conclusions Gaps and Barriers

- Air PV/T
 - Simple collector, but complicated system
 - Additional fan and ducting costs compared to conventional SDHW system
 - Lower efficiency due to air-to-liquid heat exchanger
- Liquid PV/T
 - Simple system, but complicated or very low-efficiency collector
 - High thermal performance suggests integrated collector with separate UL certification
 - Requires modularity with quick plumbing connection
 - Freeze protection in cold climates
- Few products, limited experience
- Installation involves multiple trade