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 BIPV/T collectors combine thermal and electrical 
collection into a single unit
 Smaller overall rooftop area
 Incremental cost can be low
 Heat collection can increase electrical performance
 Building integration reduces cost by replacing materials

 Applications:
 Domestic hot water (DHW)
 Hydronic or air space heating
 Ventilation air pre-heat
 Heat pump assist
 Night cooling 



 Air Collector
 Outdoor air drawn behind 

PV modules
 Glazed air collector gives 

final thermal boost
 Liquid Retrofit
 Water/glycol circulated in 

finned tubes mounted on 
roof behind PV modules

 Liquid Mat Prototype
 EPDM tube mat attached 

to back of PV



 Air Collector

 Liquid Retrofit

 Liquid Mat Prototype
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 Air PV/T Collector with Thermal Boost
 Begin by drawing outdoor air behind PV modules
 Final thermal boost with glazed air solar collector
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 Detailed first-
principles models

 Implemented in 
MATLAB or TRNSYS
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 Testing performed by 
manufacturer in 2006
 PV/T only
 PV/T with boost

 Model validated with 
test data

 Model used for annual 
energy analysis



 Testing on 2007 
Colorado Solar 
Decathlon house
 Heat collection
 Heat rejection

 Model validated with 
test data

 Model used for 
parametric analysis



 Testing on prototype 
product
 ASHRAE student project
 Proof of concept

 Preliminary 
performance



 Baseline: 4 kW roof 
mounted PV system

 Add PV/T
 Add glazed thermal 

collectors by removing 
PV (area constrained)

 Site and source energy
 DHW
 Space heating
 Night cooling

 Seven climates



 Typical daily operating 
profiles – January and 
July

 Control fan speed to 
maintain leaving 
temperature setpoint

 Leaving temperature 
setpoint depends on 
outdoor air temperature

 Pump operates to 
preheat DHW

Albuquerque



 Evaluate alternative collector 
configurations

 Increasing glazed thermal boost 
area yields higher thermal energy 
and lower electricity production
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 Increased glazing area gives 
higher collector efficiency, but 
lower system efficiency

 Net thermal efficiency near 5%
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 Evaluate alternative collector 
configurations

 Minimum source energy with 
no glazed thermal boost
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 Seven climates
 Energy costs based on 

2008 state averages
 Area constrained to 

size of 4 kW PV system
 Minimum source 

energy achieved with 
all PV/T – no thermal 
boost



 Parametric analysis of 
liquid collector with air 
gap between PV and 
fluid channels

 Collector thermal 
efficiency depends on 
wind speed

 Combined efficiency 
boosted by thermal 
performance



 Eliminating air gap increases efficiency by 2.5x
 Gap doesn’t affect minimum radiation level to 

produce heat

10 cm (4 in) air gap

No air gap



 DHW offers greater opportunities than space 
heating or night cooling

 PV/T gives relatively low thermal efficiency, but 
large area can result in solar fractions equivalent 
to traditional flat-plate collector

 Air system allows simple collector, but require 
fan and coil to deliver DHW

 Liquid system cannot be simply bonded to PV 
without compromising UL certification

 Increase in electrical efficiency modest (<5% at 
high insolation)



 Air PV/T
 Simple collector, but complicated system
 Additional fan and ducting costs compared to conventional 

SDHW system
 Lower efficiency due to air-to-liquid heat exchanger

 Liquid PV/T
 Simple system, but complicated or very low-efficiency collector
 High thermal performance suggests integrated collector with 

separate UL certification
 Requires modularity with quick plumbing connection
 Freeze protection in cold climates

 Few products, limited experience
 Installation involves multiple trade
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