
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

 

  

Electric Energy Management in 
the Smart Home: Perspectives 
on Enabling Technologies and 
Consumer Behavior 
Preprint 
A. Zipperer, P. A. Aloise-Young,  
S. Suryanarayanan, and D. Zimmerle 
Colorado State University 

R. Roche 
University of Technology of Belfort-Montbeliard 

L. Earle and D. Christensen 
National Renewable Energy Laboratory 

P. Bauleo 
Fort Collins Utilities 

To be published in Proceedings of the IEEE 

Journal Article 
NREL/JA-5500-57586 
August 2013 



 

 

NOTICE 

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC 
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US 
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of 
this contribution, or allow others to do so, for US Government purposes. 

This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Available electronically at http://www.osti.gov/bridge 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
phone:  865.576.8401 
fax: 865.576.5728 
email:  mailto:reports@adonis.osti.gov 

Available for sale to the public, in paper, from: 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 
phone:  800.553.6847 
fax:  703.605.6900 
email: orders@ntis.fedworld.gov 
online ordering:  http://www.ntis.gov/help/ordermethods.aspx 

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 
16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721. 

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste. 

http://www.osti.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx


 

1 This report is available at no cost from the 
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications. 

  
Abstract— Smart homes hold the potential for increasing 

energy efficiency, decreasing costs of energy use, decreasing the 
carbon footprint by including renewable resources, and trans-
forming the role of the occupant. At the crux of the smart home 
is an efficient electric energy management system that is enabled 
by emerging technologies in the electricity grid and consumer 
electronics. This article presents a discussion of the state-of-the-
art in electricity management in smart homes, the various 
enabling technologies that will accelerate this concept, and topics 
around consumer behavior with respect to energy usage. 
 

Index Terms—behavioral science, consumer behavior, decision 
making, energy management, load management, smart grid, 
smart home  

I. INTRODUCTION 
smart home may be defined as a well-designed structure 
with sufficient access to assets, communication, controls, 

data, and information technologies for enhancing the occu-
pants’ quality of life through comfort, convenience, reduced 
costs, and increased connectivity [1]. The idea has been 
widely acknowledged for decades, but few people have ever 
seen a smart home, and fewer still have occupied one. A 
commonly cited reason for this slow growth has been the 
exorbitant cost associated with upgrading existing building 
stock to include “smart” technologies such as network 
connected appliances [1]. However, consumers have histori-
cally been willing to incur significant costs for new communi-
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cation technologies, such as cellular telephones, broadband 
internet connections, and television services. Table I presents 
the changes in US mean monthly income by quintiles and 
overall consumer spending on communication services, 
adjusted for 2011 USD [2]–[6].  

TABLE I.  US MONTHLY INCOME AND COMMUNICATIONS 
EXPENDITURES FOR 1980 AND 2008 

 
This information may indicate that consumers are not 

averse to significantly changing their spending habits with the 
advent of new technologies. According to the US Bureau of 
Labor Statistics the average homeowner spent approximately 
11% more on entertainment (including cell phone and internet 
services) in 2010 than 25 years ago [2]. Data indicate that 
consumers are willing to spend more on hybrid vehicles than 
on similarly sized traditional vehicles for reasons other than 
economic payback [7].  

Diverse motivations can lead to the same end goal. For 
instance, a consumer may purchase a hybrid vehicle to 
decrease carbon emissions, reduce dependency on foreign oil, 
save money, or simply as a status symbol. Regardless, driving 
a hybrid vehicle contributes to a more sustainable energy 
future by reducing oil consumption and greenhouse gas 
emissions. Similarly, marketing or societal influences may 
motivate consumers to invest in smart home technologies. 

The authors contend that cost and the lack of perceived 
value have combined to slow the adoption of smart homes. 
However, the perceived value of a smart home is likely to 
vary across populations [8]. 
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A 

 1980 ($) 2008 ($) Change (%) 

Mean Income Quintile I 4,310 11,656 170 

Mean Income Quintile II 10,727 29,517 175 

Mean Income Quintile III 17,701 50,132 183 

Mean Income Quintile IV 26,078 79,760 206 

Mean Income Quintile V 46,497 171,057 268 

Communication Services 22 117 432 
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The US Energy Information Administration (EIA) estimates 
that 37% of end use electricity in the US is consumed in 
residences [4]. Concomitantly, household appliances, 
consumer electronics, and construction techniques are 
becoming increasingly efficient [5]. As the Smart Grid 
Initiative in the US progresses, the end-user is enabled with 
near-real time information from the service provider [9]. This 
presents an opportunity to coordinate the management of 
appliances and other loads in the smart home, considering 
information flow and end-user behavior.  

This paper is organized as follows: section II describes a 
smart home; section III outlines the assets and control 
strategies in a smart home; section IV presents some enabling 
technologies; section V explains consumer energy behavior, 
especially in a residential environment; and, section VI offers 
concluding remarks. 

II. SMART HOMES 

A. What is a Smart Home?  
A home is already a well-designed connector for power 

transfer between the electricity grid and energy-consuming 
appliances. A smart home also functions as a switchboard for 
data flow among appliances and participants such as the end-
user, the electric utility, and a third party aggregator [9], [10]. 
This evolved capability benefits stakeholders on both sides of 
the interface – utility customers, utilities, and third party 
energy management firms – because there are strong incen-
tives for all sides to help the others function smoothly. For 
instance, a homeowner may not inherently care about the peak 
demand issues faced by the utility, but electricity prices and 
supply reliability are tied to operational practices of the 
service provider. On the other hand, a utility may be primarily 
concerned with meeting the requirements of public utility 
commissions, but unhappy ratepayers may result in business 
and regulatory risks. 

Looking outward, a smart residential building has two-way 
communication with the utility grid, enabled by a smart meter, 
shown in Fig. 1, so that it can interact dynamically with the 
grid system, receiving signals from the service provider and 
responding with information on usage and diagnostics. A 
detailed description of the smart meter is provided in section 
IV. This bidirectional information exchange is enabled by the 
rapid adoption of advanced metering infrastructure (AMI).  

 

 
Fig. 1. A smart meter at a residence. Photo sourced from National Renewable 
Energy Laboratory (NREL) database, PIX 21394. 

 
Looking inward, a smart home employs automated home 

energy management (AHEM), an elegant network that self 
manages end-use systems based on information flowing from 
the occupants and the smart meter. The value of AHEM is in 
reconciliation of the energy use of connected systems in a 
house with the occupant’s objectives of comfort and cost as 
well as the information received from the service provider. 
Sensors and controls work together via a wireless home area 
network (HAN) to gather relevant data [11], process the 
information using effective algorithms, and implement control 
strategies that simultaneously co-optimize several objectives: 
comfort and convenience at minimal cost to the occupant, 
efficiency in energy consumption, and timely response to the 
request of the service provider [12]. An example of a smart 
home, constructed in a laboratory setting at NREL, is shown 
in Fig. 2. 
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Fig. 2. NREL’s AHEM laboratory. Photo sourced from NREL database, PIX 
20207.  

B. Economic feasibility and likelihood of widespread 
adoption 
Several market and technology trends are expected to 

accelerate the development of cost-effective AHEM systems 
that enable smart homes. These include: 
• Implementation of smart grids and continued growth in 

home offices will expand market penetration of secure 
HANs. 

• Growth in web-based cloud computing applications will 
enable low-cost home energy data storage, data display, 
and data analysis for AHEM trend analysis [13]. 

• Advancements in smartphone technology such as batter-
ies, user interfaces, and material [14], are expected to aid 
the development and adoption of AHEM systems. 

• Manufacturers of residential equipment and appliances 
continue to embed additional sensors and control capabil-
ities in new, smart home appliances that are internet-
ready, can respond to requests from service providers, 
and offer advanced cycle controls such as multi-mode or 
variable speed controls and fault diagnostic sensors for 
space-conditioning equipment and "eco" modes for 
dishwashers, clothes washers, and other major appliances 
[15]. 

• Integration of energy services into other networked 
product offerings, such as security systems and television 
and telephony service. 

A key strategy to engaging all stakeholders may lie in 
changes to the end-user electricity pricing structures – from 
fixed tariffs to dynamic prices that may change several times 
over a day – that reflect the use of the assets on the grid at any 
given time. If these structures are implemented to provide a 
tangible financial incentive for customers to respond to the 
requests of the service providers for demand reduction, the 
customers can receive measurable monetary value for their 
participation, in addition to the increased reliability of their 
service. Financial incentives are but one motivating factor for 
the adoption of smart homes. 

C. Smart Home Energy Management 
Large-scale demonstration efforts have thus far approached 

smart home research with a strong utility focus and less 
homeowner focus. Currently the incentive for homeowner 
participation is limited to relatively small financial gain via 
utility pricing structures; otherwise the motivation is primarily 
altruistic (i.e., environmental benefits). Most utilities offer 
incentives for energy upgrades such as attic insulation or 
ENERGY STAR® appliances and many have leveraged load-
shedding technologies that cycle air conditioners during peak 
load events. Increasingly, utilities are funding more elegant 
efforts for on-request load reduction in the residential sector. 
For example, CPS Energy of San Antonio, Texas has 
partnered with Consert Inc. to demonstrate a load reduction 
system that can alter air conditioner and water heater set 
points and pool pump operation at the end-user facility during 
peak load times to enable substantial peak savings with 
limited impact on their customers [16]. This system is being 
rolled out to most residential customers in the San Antonio 
service territory. 

Some utilities such as ComEd provide near-real time data to 
homeowners, along with several pricing structures and load 
reduction requests [17]. Many companies have recently 
incorporated web-based user interfaces, so a homeowner can 
adjust thermostat settings or turn off lights from a smartphone, 
as shown in Fig. 3 , or a web browser [15].  

 

 
Fig. 3. A smartphone app for smart homes. Photo sourced from NREL 
database, PIX 20284.  
 

Advanced grid measurements using AMI infrastructure are 
being rolled out in California and Texas [18]. These projects 
have multipronged focus of better integration of renewables, 
enhancement of efficiency, and optimization of consumer 
demands with utility needs on a community scale. Emerging 
nonintrusive load measurement systems can provide enabling 
data, but these modern measurement techniques are not yet 
robust, accurate, easy to install, or cost-effective for integra-
tion at the meter [19]. The available legacy methods for load 
disaggregation use algorithms supplemented with estimation, 
so the results may have less relevance to a given household 
than across an aggregated population [ ].  
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III.  ASSETS AND CONTROLS 
In smart homes, many loads can be considered as assets that 

can participate in the efficient use of electric energy: thermal 
loads, electric vehicles, and smart appliances. By intelligently 
controlling their behavior in either a reactive or a coordinated 
manner, these assets can provide leverage for energy and cost 
savings [20]. 

Thermal loads, such as air conditioning, electric space 
heating and water heating, can be controlled by "intelligent" 
thermostats. Contrary to traditional thermostats operating 
according to the hysteresis principle, an advanced thermostat 
such as the Nest has a learning capability that can automatical-
ly learn from user behavior patterns [21]. Then, the thermostat 
adapts the room temperature efficiently, e.g., by auto-
scheduling heating according to arrival and departure times 
and by detecting when the users are away [21], [22]. These 
strategies can help reduce energy consumption, especially 
when traditional or programmable thermostats are not 
configured properly, or cannot detect that users are away. 
Detailed control of household loads would allow the inherent 
thermal inertia of smart housing stock to be used for energy 
storage. The controller could “learn” the thermal response of 
the home, including factors such as weather forecasts, weather 
observations, and load levels from monitored devices. The 
resulting model would better predict future loads, which could 
be used locally or aggregated for the utility to plan short-term 
control options. For example, a smart home controller could 
pre-cool a house in the morning, before the system peak load, 
reducing air conditioning loads when signaled from the utility.  

Plug-in electric vehicles, including hybrids, are expected to 
represent 1.7 to 3.5% of all US light duty vehicles by 2025 
[23]. These correspond to a significant domestic load inter-
faced with power electronics that can also help make homes 
smarter. Using the vehicle-to-home technology, they can 
temporarily power the household, e.g., during demand peaks 
when power may become more expensive and the battery can 
provide a part of the total demand, or during outages by 
powering the entire household until the battery reaches its 
lower state-of-charge threshold [24], [25]. Adapting the 
charging schedule according to grid supply conditions offers 
additional possibilities, as described in section IV. The utility 
of such distributed storage may be improved when used 
together with distributed generationsources, such as photovol-
taic panels [24]. 

A growing number of domestic loads, including electronics, 
solid-state lighting and variable-speed motors, use DC power 
internally. Most small, distributed, renewable energy sources 
generate DC power, which must be converted to AC for grid 
connection. Some recent work has considered household-sized 

distributed storage systems for local back-up power and 
ancillary service provision [26], [27]. The convergence of 
these sources and loads provides an interesting opportunity for 
significant advances in granular control of loads and high 
penetration of small-rated DC-powered assets.  

A smart home could also integrate a low-voltage DC bus. 
Renewable resources, battery storage, and potentially vehicle 
charging could all interconnect on a DC bus. The DC bus 
would be integrated at a single point, and many inverters and 
converters would be reduced to DC-DC converters. When 
high volumes drive down costs, this simplification could 
reduce the cost and improve the efficiency of renewable 
systems, solid-state lighting and electronic loads. However, 
this paradigm shift presents challenges in electrical protection, 
re-wiring, and standardization. Presently, the EMerge Alliance 
is developing standards for DC distribution and usage, 
including 24V and 380V distribution systems [28]. Use of DC 
power distribution remains a retrofit challenge for existing US 
housing stock, but researchers are studying combined AC/DC 
distribution using existing building wiring [29]. 

Appliances also hold potential for smarter energy use. 
Dishwashers, washing machines and clothes dryers can be 
scheduled in advance, and do not need to be directly con-
trolled by the user. The starting time can be postponed by 
several hours, with no impact on the user as long as the cycle 
is over when the user requested it initially. A similar strategy 
can be used to control freezer and refrigerator cycle so as to 
reduce peak demand by coordinating their operation [30]. 
Finally, many other loads can provide resources for smart 
energy use, and increase the comfort of the user, including 
automatic blinds that adjust based on daylight intensity, 
adaptive lighting, and autonomous vacuum cleaning robots. 
These devices exploit the possibilities offered by the extensive 
use of sensors, sometimes forming wireless sensor networks, 
and actuators controlled by smart, adaptive and possibly 
learning algorithms. 

Almost all loads are, or could be, equipped with intelligent 
controllers, ranging from simple on/off control of state 
lighting, to sophisticated controllers for photovoltaic systems, 
vehicle chargers, and large loads such as air conditioning. 
With appropriate standardization and high volumes, practical, 
low-cost communication systems could connect most loads to 
a central household controller. The controller could provide 
detailed monitoring and control for occupants. With proper 
AMI interfacing, the home could further aggregate the 
resources for system uses, requested by the service provider. 
A block diagram of the centrally controlled smart home and 
its constituent assets is presented in Fig. 4. 
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Fig. 4. Schematic diagram of a centrally controlled smart home adapted from [31] 

 
If properly designed, controllers could also monitor loads 

and identify system issues, such as unexpected increases in 
power draw, current harmonics or vibration. Significant value 
– economic and personal – could be derived from identifying 
issues in advance of catastrophic failure. 

For many utilities, a smart meter constitutes a smart grid. 
For others, these smart meters can be put to greater use and 
provide more substantial value to the utility, the grid, and the 
end-users via coordination. Analogously, smart homes may 
span the spectrum from the simple addition of discrete 
features – such as smart appliances or remotely controllable 
lighting and thermostats – to an automatically controlled, 
highly coordinated self-learning system with grid interaction. 
In the latter case, the control system serves as the brain of the 
smart home by automating domestic chores and providing 
sufficient feedback and communication. This symbiotic 
relationship improves the user’s quality of life and allows 
active participation in bulk power system operations. 

 There are two schools of thought about the overall purpose 
of the smart home control system. The first school of thought 
posits that an ideal smart home control system should be 
entirely automated, predicting a user’s every whim and 
reacting accordingly so as to maintain user-centered optimal 
comfort, convenience, and if applicable, savings [1]. One of 
the tenets of this prevailing theory envisions minimal user 
input. The control system may incorporate a machine learning 
algorithm to predict a user’s desires as they occur. The second 
– and competing – school of thought envisions smart homes 
with well-informed and engaged users that value energy 

sustainability and are thus active participants in the everyday 
electricity management of the home [32]. In this case, the 
consumer is enabled with timely feedback on costs, energy, 
and emissions to influence the appropriate control strategy.  

Machine learning [33], rule-based [34], multi-agent [35], 
and decision-making systems [31], constitute the state-of-the-
art in control strategy paradigms for the smart home. Although 
several smart home control systems are commercially 
available, they are currently cost prohibitive to the average 
consumer; these are expected to become affordable as 
enabling technologies mature.  

IV. ENABLING TECHNOLOGIES 
Enabling technologies for smart homes mostly fall into two 

broad categories: utility-side and customer-side, and may be 
further enhanced through policy and legislation. Psychological 
and behavioral considerations (explained in detail in section 
V) could also greatly enhance the effectiveness of all the 
following enabling technologies.  

A. Utility-Side Enabling Technologies 
One of the most pressing issues for a utility company is the 

management of peak demand. From electricity generation to 
delivery, the electricity grid is designed to serve consumers 
during peak demand conditions; however for most of the time, 
the system is not used at full capacity, so a significant fraction 
of the system capacity idles. This is economically inefficient, 
as it requires large capital investments for peaking plants that 
are infrequently used, in some cases for only a few dozen 
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hours per year, but that have to be maintained year-round. In 
the transmission and distribution realm, similar situations 
occur in the installation and maintenance of transmission 
lines, substations, transformers, distribution feeders and cables 
that are designed to accommodate infrequent peak conditions. 

Smart homes are expected to aid utility companies through 
the ability to dynamically modify their electric energy 
consumption in response to grid conditions, allowing reduc-
tions in the output of peaking generation and transmission 
capacity. The savings introduced to utilities in the form of 
reduced capital investments as well as reduced purchase of 
expensive electricity from peaking generators in the spot 
market, will ultimately be passed to ratepayers.  

There are two primary methods of modifying home energy 
consumption: total energy reduction through efficiency 
improvements or other measures; and peak demand shedding 
or shifting through some method of demand response (DR) 
activities. The former aims to reduce the amount of fuel 
consumed at power plants to produce electricity; the latter, 
explained in detailed in subsection 2, is of more interest to 
utilities since it reduces infrastructure requirements. These 
two methods are represented graphically in Fig. 5 with 
synthesized data for a typical residence. Potential energy 
efficiency schemes are portrayed by the dashed line (for 5% 
uniform energy savings), and for a possible peak demand 
mitigation technique that uses approximately the same overall 
energy over 24 hours as the base case, but uses it at more 
optimal times than during the hours of system peak (indicated 
between 1600-2100 hours in Fig. 5). 

Motivating residential customers to modify energy con-
sumption habits is a difficult task that often has shown 
unexpected consequences. These will be discussed in more 
detail in section V, but here the authors will outline the 
existing incentive methods. 

 

 
Fig. 5. Typical residential electrical load profile with base case, energy 
efficient case with uniform 5% energy savings, and load shifting case using 
approximately the same amount of energy but with peak shifted. 

1) Rates 
One tool that is traditionally used to influence demand of 

any commodity is its cost. For electricity utilities, each rate 
structure imposes specific requirements on the metering 
system to be implemented. Inclining-block, time-of-use 
(TOU), critical peak price (CPP), and peak-time-rebate (PTR) 
are the typical rate forms used to influence electricity demand.  

Inclining block rates are designed so that the relationship 
between consumption and cost is non-linear, and discourages 
high consumption. This rate aims to reduce overall energy 
consumption and not peak demand. TOU rates, as the name 
suggests, change based on a set schedule. There are frequently 
three price buckets (low, medium, and high) corresponding to 
off-peak, mid-peak, and on-peak, respectively. TOU rates 
attempt to shift loads away from peak times, but they are not 
flexible enough to respond to dynamic operating conditions 
because the schedules are set far in advance. CPP rates 
address the dynamic conditions of the electricity grid by 
defining a “super peak” with very high costs. This encourages 
customers to shift loads and contribute to improving near real 
time operational conditions – such as system overload or 
peaking generator dispatch –to avoid higher costs. A PTR rate 
also contains super peak periods, but pays a rebate to the 
consumers based on the usage reduction relative to the 
projections. Advanced analytics including weather and usage 
patterns are used to predict what the consumer’s usage would 
have been in the absence of a super peak period.  

The effectiveness of these pricing structures at reducing 
residential energy or peak consumption is not well estab-
lished, as AMI projects are relatively few. Different pilots 
indicate that residential consumers achieve the high peak 
reductions, especially in the summer, with the modified rate 
structures (CPP and PTR), and high satisfaction levels under 
the modified rates [36]. These dynamic rate structures and 
other enabling technologies can reduce utility side infrastruc-
ture investments, and therefore reduce electricity rates to 
consumers, simultaneously saving money for both sides. 

2) Demand Response 
In addition to rate structures, utilities may employ other 

strategies, such as DR, to mitigate peak load conditions. DR 
refers to a group of technologies and mechanisms that enable 
load curtailment or shifting in response to supply conditions. 
DR is particularly effective at reducing peak demand [37]. 
Contrary to energy efficiency, DR only aims at temporarily 
reducing load. In addition to rate structures, residential 
customers in smart homes can participate in DR via dispatch-
able mechanisms. Direct load control is generally used to 
mobilize capacity for load reduction, or for participating in 
ancillary services in the electricity market, e.g., for reserves. 
Because many household-scale loads are required to reach 
significant capacities of several MWs, energy service 
providers called aggregators sometimes operate such services. 
These aggregators (which are sometimes the utility) are 
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required to enable customers to participate indirectly in energy 
markets [38] in exchange for financial compensation. 

Loads can be curtailed or shifted in time by several means 
using direct load control. For thermal loads such as air 
conditioning or water heating, temperature settings can be 
temporarily changed so that the load is reduced (due to 
thermal inertia) or not used during the DR event, reducing 
electricity consumption compared to the baseline. Electric 
vehicle charging can also be rescheduled by postponing the 
beginning of the charge, by reducing the charging rate, or by 
simply not fully recharging the battery (in the case of a plug-
in hybrid electric vehicle) [39]. The use of smart appliances 
can also be shifted in time, e.g., a washing machine can be 
programmed to operate only when the electricity price is 
below a given threshold [40]. 

Depending on the mechanism used to achieve DR, a re-
bound effect may appear in the form of a large load peak after 
the end of the DR event [41]. This peak counters the purpose 
of a DR event, due to all the curtailed devices restarting their 
operation at the same time. Strategies such as cascading the 
beginning and end of the DR event for end-users can be used 
to mitigate this effect by lengthening and flattening this peak. 
However, these mechanisms may impact the habits and 
comfort of the user and cause acceptance issues. Temperature 
sensations vary from one person to the other, and what seems 
comfortable for one person may not be for another. DR 
mechanisms therefore need to take into account these 
constraints, for example, by allowing users to customize 
settings and set minimum and maximum values. These effects 
will be explored in section V.  

A proper use of DR mechanisms may help end-users reduce 
their electricity bills in exchange for a moderate impact on 
their comfort, while utilities can achieve significant savings by 
avoiding the need to build new generation capacity or to buy 
expensive peak power. Moreover, when demand exceeds 
capacity, DR can reduce the load with limited customer 
impact compared to traditional load shedding schemes.  

3) Smart Meters 
The above-described technologies rely on an enabling 

technology whose acceptance and implementation is accelerat-
ing: the smart meter (shown in Fig. 1). A smart meter provides 
the information and communication infrastructure to com-
municate in real time the operational and pricing information 
bi-directionally between the end-user and the service provider. 
Smart meters are usually capable of much more than this by 
including the ability to communicate with in-home appliances, 
programmable communicating thermostats (PCTs), and other 
loads.  

Smart meters can record consumption data at intervals (as 
frequently as every minute) and automatically transfer the 
information to the utility over a secure network. Various 
communication architectures, including point-to-multipoint 
and mesh networks, have been implemented. This network, 

often in conjunction with a backhaul layer, provides two-way 
connectivity between the utility and the meter. The network 
also supports pushing signals to the meter, which could be 
used for an “on demand” reading to confirm power restoration 
after an outage, or to notify the meter of an upcoming “super 
peak” event. 

When the meter is notified of an event, the information is 
communicated to appliances inside the customer’s home using 
the meter’s onboard ZigBee radio chip or other means. Based 
on pre-defined preferences or rules, different appliances can 
act to reduce or shift consumption in preparation for or during 
the “super peak” events.  

B. Customer-Side Enabling Technologies 
Customer-side enabling technologies can rarely exist on 

their own merits. They usually require at least one utility side 
enabling technology to predate them. For example, a smart 
appliance is of lesser use without a dynamic rate structure or 
smart meter. This has been somewhat of a stumbling block for 
the industry, as the chicken-or-the-egg causality argument has 
prevented significant adoption and investment on either side. 

1) Smart Loads 
Smart appliances are currently a fledging technology. A 

smart appliance is an end-use device that is connected to a 
HAN and may be able to automatically or remotely respond to 
signals from the utility or other sub-systems in the smart 
home. Different devices allow reduction or shifting of power 
consumption, including PCTs, which can change the set-point 
or cycle the air conditioning compressor based on notification 
of a “super peak” event. More advanced and intriguing 
options have been proposed for freezers and refrigerators, 
such as delaying the defrost cycle (often the highest demand 
mode of operation) to be scheduled away from “super peak” 
events. 

A more advanced use of a PCT would be to lower the set-
point in advance of the initiation of the “super peak” event to 
pre-cool the house and then use the thermal inertia of the 
construction to coast during the event, without affecting 
comfort. Advanced analytics – including knowing the actual 
heat exchange rate of the building – may be required, though 
machine learning controls can effectively learn building 
thermal mass characteristics. 

The significant investment required to outfit a home with 
smart appliances can be somewhat alleviated by retrofitting 
traditional appliances with smart plug-load switches. These 
devices have yet to standardize a communication protocol, 
with available devices using ZigBee, 802.11 class wireless 
local area network, Bluetooth, or power line communication 
protocols.  

2) Customer Portal 
The information collected by the smart meter may be of 

high value to the consumer, as it can help increase awareness 
of energy consumption. To make this information accessible 
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and understandable, several utilities are introducing web 
portals that customers can use to access detailed information 
on their usage patterns, and often discover avenues of energy 
efficiency. Many commercial web portals include functionali-
ty such as analytics to increase energy efficiency based on 
consumption patterns, insights on why a bill increased, and 
historical bill information. Export functions – to integrate the 
raw data with third party applications for further analytical 
insights – are becoming common. These web portals often 
include a smartphone app, which is somewhat different from 
the browser based web portal, as the app is geared toward 
high frequency and low engagement transactions. 

C. Policy and Standards 
Changes to energy policies and available subsidies for 

retrofitting existing homes with smart appliances as well as 
building new homes with smart technologies are viewed as 
non-technological enablers. In the US, the Energy Policy Act 
of 2005, the Energy Independence and Security Act of 2007, 
and the American Recovery and Reinvestment Act of 2009 
have all provided tax incentives, credits or deductions for 
residential energy efficiency upgrades. 

Lack of industry-accepted device communication and 
interoperability standards is a critical barrier to more wide-
spread adoption of smart home technologies. Several ISO and 
IEEE standards activities are underway or recently completed 
to begin addressing this barrier. Key among them are ISO/IEC 
15045, 15067, 18012, and IEEE 2030. 

V. CONSUMER BEHAVIOR 
The impact of technological advancement is acknowledged 

as an important enabler for the expansion of smart homes, an 
integral part of the equation is influencing the behavior of the 
occupant vis-à-vis energy usage with information and 
education [32]. Feedback and automation are essential 
features of achieving this in a smart home. However, an 
optimal energy efficiency strategy requires both features be 
designed with the end-user in mind. 

Numerous studies have examined the effect of diverse 
forms of feedback on residential electricity usage. Feedback 
has ranged from low-tech forms such as door hangers [42], to 
state-of-the-art in home displays (IHDs) [43]. Feedback has 
usually comprised the current and past electricity usage of the 
end-user, but has sometimes included normative information, 
such as comparisons to one’s neighbors [44]. In some cases, 
feedback has been combined with TOU rates or other 
incentives [45]. Recent reviews have concluded that real time 
feedback can effectively deliver durable 4% to 9% reductions 
in residential electricity consumption [46]–[48]. However, 
utilities are challenged when predicting the energy savings 
that will be achieved through feedback programs because of 
limitations in the available data. This is critical as utilities 
attempt to make the case to already skeptical customers. 

Although it is beyond the scope of this paper to extensively 
review these feedback studies, the authors point out some 
important differences among them and caution the reader 
about extrapolating from the average energy reductions 
obtained in these studies to wide-scale IHD deployment. In 
particular, feedback studies vary in their recruitment strategies 
and some have methodological features that limit their 
generalizability. 

A critical aspect of feedback studies is whether participants 
opt-in or opt-out, i.e., some utility pilots randomly selected a 
group of customers to enroll in a pilot and allowed those 
customers to choose not to participate (opt-out) [49], [50]. In 
contrast, opt-in studies, which are more common, advertised 
the study and asked for volunteers [51]–[53]. This seemingly 
subtle difference in recruitment can profoundly affect the 
results. Opt-in studies have shown relatively consistent effects 
of feedback. For example, three opt-in studies have shown 
overall energy savings of 6% to 10% [52]–[54]. In contrast, 
two opt-out studies conducted in [49] and [50] showed no 
significant effect of IHDs on electricity consumption. This 
difference has been demonstrated across a variety of energy 
conservation programs showing that opt-in programs have 
larger participant impact but lower penetration than opt-out 
programs [44], [55].  

Another important consideration for evaluating feedback 
studies is whether they include comparisons to a randomly 
assigned control group. However, the absence of comparisons 
to a control group is common [56], [57]. The HAN pilots of 
Salt River Project in Arizona and San Diego Gas & Electric in 
California both report having control groups without compari-
sons between the treatment and control in the analyses [45], 
[58]. Moreover, some studies that include a control group are 
unable to yield valid comparisons. For example, [43] had 
three IHD conditions consisting of customers who opted in to 
the study; and, the IHD conditioned energy usage was 
compared to that of a control group selected from utility 
customers who did not volunteer for the study. These two sets 
of customers are likely to differ in important ways. Because 
[43] did not control for prior electricity usage, comparisons 
between the control and IHD groups are of limited use.  

A major limitation to the work on feedback efficacy is the 
relative lack of long-term datasets that can help evaluate 
persistence [59]. For smart homes to realize their potential, 
consumers must be engaged, which may prove challenging. 
For example, a recent study examined the effectiveness of 
electricity consumption feedback by randomly assigning 
participants to feedback delivered via the now discontinued 
Google Powermeter web interface and control conditions [51]. 
The feedback consisted primarily of a graph that presented 10-
min interval and historical comparison data. However, other 
features were available, including projected electricity 
consumption during different time periods (e.g., night, 
morning) and for the whole year, a link to energy conservation 
tips and an email reminder. The results in [51] indicate that 
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the effect of feedback wanes over time.  Reductions in energy 
consumption of 8% were seen in the first week. Energy 
consumption had returned to baseline levels by the fifth week. 

Concerns about the durability of behavior change feed the 
belief that the real solution to energy efficiency is automation. 
Automation will be an important component of smart homes 
and should not be viewed as a way to override the consumer 
but rather to increase the convenience of efficient choices 
[32]. Successful smart home design requires focusing on the 
idea that people use energy for important functions in their 
lives. Therefore, automation must allow consumers to reduce 
energy use without being perceived as interfering with these 
important functions. Otherwise, the end-user may circumvent 
the technology and reduce the efficiency of the smart home. 

The construct of psychological reactance describes this 
phenomenon [60]. When individuals feel that their freedom is 
threatened, they act to restore that freedom. If people believe 
that the smart home is prohibiting them from living the way 
they wish, they may respond by overriding the programmable 
thermostat to manually set points higher than before it was 
installed. To prevent psychological reactance, the smart home 
must give the end-user choice. Allowing the end-user to 
customize the settings of smart appliances and especially 
allowing the user to opt-out of functions, such as a delayed-
start on a dishwasher on a use-by-use basis, will be important 
to reduce psychological reactance. 

In the case of energy efficiency, psychological reactance 
manifests through the “rebound effect” that occurs when 
technological improvements fail to live up to the expected 
energy savings because behavioral changes counteract the 
increased energy efficiency [61]. The authors differentiate the 
rebound effect mentioned from that mentioned in section IV 
with respect to DR.  

Studies of the rebound effect for residential space heating 
show that energy savings fall short of expectations by 10 to 
30%. In particular, in lower income homes, families convert 
some of their new energy efficiency into greater comfort by 
increasing the wintertime thermostat set point [61]. This might 
seem counterintuitive to engineers and other professionals 
who define energy efficiency as “using less energy to provide 
the same service” [62]. However, consumers view efficiency 
as providing the functionality they desire for as little energy as 
possible [63]. In fact, increasing comfort was the top reason 
cited by California homeowners for pursuing energy efficient 
retrofits. Although comfort outranked the desire to reduce 
energy bills, reducing costs was also an important considera-
tion [64]. Other studies have found that participants consist-
ently cite saving money as a top reason for performing energy 
efficient retrofits such as insulating the attic [65], [66]. 
However, comfort is often overlooked and needs to be 
considered in smart home design because energy use varies as 
a function of tolerance for discomfort [63]. Although technol-
ogy enables the development of smart homes, an integral part 
of the equation is influencing occupants’ behavior. 

VI. CONCLUSION 
Smart homes rely on numerous enabling technologies in 

both the electricity grid and consumer electronics. Standardi-
zation and maturity of the technologies in each of these realms 
is required if smart homes are to be pervasive. Given that buy-
in from users is a key that will unlock the adoption of smart 
homes, rigorous tests with consumers must be integrated into 
the smart home design procedure. Without the comprehensive 
multi-disciplinary assessment of the smart home, an expensive 
system may fall short of expectations. 
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