Development of Advanced Manufacturing Methods for Warm-White LEDs for General Lighting

DOE Project # DE-EE0003232

Project update at the SSL Manufacturing workshop in San Jose, CA
13th-14th June 2012

Team at GE Lighting Solutions
Anirudha Deshpande (PI), Boris Kolodin, Cherian Jacob, Ashfaqul Chowdhury, Glenn Kuenzler, Danny Aesram, Steven Glaettli, Brian Gallagher, Paul Langer

Advisory role – Anant Setlur, William Beers
Background for the project

Vio™ Designed for performance, ease of manufacturing and scalability

Vio Nomenclature

Data Sheet

Electrical and Optical Performance

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Description</th>
<th>CCT Min</th>
<th>CCT Typical</th>
<th>CCT Max</th>
<th>Lumens Typical</th>
<th>Lumens per Watt Typical</th>
<th>Forward Voltage Min</th>
<th>Forward Voltage Typical</th>
<th>Forward Voltage Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>7337</td>
<td>Vol.1,2W/30</td>
<td>2000</td>
<td>3000</td>
<td>3100</td>
<td>3.2</td>
<td>64</td>
<td>52</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>7335</td>
<td>Vol.1,2W/35</td>
<td>2000</td>
<td>3000</td>
<td>3100</td>
<td>3.2</td>
<td>67</td>
<td>55</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>7351</td>
<td>Vol.1,2W/38</td>
<td>3000</td>
<td>4000</td>
<td>4100</td>
<td>3.2</td>
<td>69</td>
<td>57</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>7351</td>
<td>Vol.1,2W/35</td>
<td>2000</td>
<td>3000</td>
<td>3100</td>
<td>3.2</td>
<td>55</td>
<td>46</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>7349</td>
<td>Vol.1,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.2</td>
<td>55</td>
<td>46</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>7340</td>
<td>Vol.1,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.2</td>
<td>57</td>
<td>47</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>7356</td>
<td>Vol.3,6W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.6</td>
<td>171</td>
<td>44</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>7325</td>
<td>Vol.3,6W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.6</td>
<td>188</td>
<td>53</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>7357</td>
<td>Vol.3,6W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.6</td>
<td>196</td>
<td>55</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>7350</td>
<td>Vol.3,6W/30</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.6</td>
<td>144</td>
<td>40</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>7348</td>
<td>Vol.3,6W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.6</td>
<td>133</td>
<td>45</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>7346</td>
<td>Vol.3,6W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>3.6</td>
<td>160</td>
<td>45</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>7459</td>
<td>Vol.7,2W/30</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>7.2</td>
<td>300</td>
<td>44</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>7460</td>
<td>Vol.7,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>7.2</td>
<td>310</td>
<td>52</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>7461</td>
<td>Vol.7,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>7.2</td>
<td>350</td>
<td>49</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>7452</td>
<td>Vol.7,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>7.2</td>
<td>250</td>
<td>35</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>7453</td>
<td>Vol.7,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>7.2</td>
<td>275</td>
<td>43</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>7454</td>
<td>Vol.7,2W/35</td>
<td>3000</td>
<td>3000</td>
<td>3100</td>
<td>7.2</td>
<td>285</td>
<td>42</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

3 second pulse 850 nm at 2°C, 40% RH.

- Established product with a range of different SKUs (1W-7W)
- Potential for manufact. cost reduction and performance improvement

BOM Costs Plotted in Arbitrary Currency Units for 1W Vio™ Product After task 5 (comparison with baseline)

imagination at work

DOE SSL Manufacturing Workshop
13th-14th June 2012
Project Plan

PHASE I

Task 1
Overall Program Management

Task 2
Evaluate “Remote” Phosphor Manufacturing methods
Deliverables:
• Downselected process approach
• Performance and reliability criteria met

Task 3
Pilot downselected “Remote” Phosphor Manufacturing method
Deliverables:
• Acceptable color variation established
• Performance and reliability criteria met
• Cost targets met

Task 4
Design & pilot high-speed characterization techniques
Deliverables:
• Establish measurement system capability
• Pilot measurement system with satisfactory GR&R

PHASE II

Task 5
Design of Volume Production Line
Deliverables:
• Detailed large-scale manufacturing plan.
• Performance and reliability criteria met
• Cost targets met
Task-2

Phosphor molding

Milestone # 1

Based on early reliability / performance / cost savings potential
- Phosphor Molding selected as the preferred path

OR

Slurry Coating

• Eliminate phosphor waste in current process
• Reduce part to part color variation

Task 2

Evaluate "Remote" Phosphor Manufacturing methods
Deliverables:
• Downselected process approach
• Performance and reliability criteria met

imagination at work
Task-2
Phosphor molding

Task-3
Reliability testing

OR

Milestone # 1
Phosphor molding selected

Slurry Coating

OR

Milestone # 2
Adaptation into manuf. line

Reliability testing

Scale up

HTOL

RTOL

LM-80 Testing

Long term reliability tests and manufacturing scale up of Phosphor Molding

Task 3

Pilot downselected “Remote” Phosphor Manufacturing method

Deliverables:
- Acceptable color variation established
- Performance and reliability criteria met
- Cost targets met

DOE SSL Manufacturing Workshop
13th-14th June 2012
Task-4

Machine concepts finalized, build started in 2011

Machine build complete in 2012

Task 4
Design & pilot high-speed characterization techniques
Deliverables:
- Establish measurement system capability
- Pilot measurement system with satisfactory GR&R

DOE SSL Manufacturing Workshop
13th-14th June 2012
Task-5

Design for large scale manufacturing line for Vio™

Go from a batch, manual process to a high speed line manufacturing process

Currently manual

Currently semi automated

Design created for future possible expansion

Task 5

Design of Volume Production Line
Deliverables:
- Detailed large-scale manufacturing plan.
- Performance and reliability criteria met.
- Cost targets met.
Summary / Results

Less than 2 step MacAdam ellipse color shift after 6K hrs

Less than 4 step MacAdam ellipse color distribution in manuf.

Projected L70 of greater than 50K hrs

<table>
<thead>
<tr>
<th>I(mA)</th>
<th>VF</th>
<th>Iv (Lm)</th>
<th>CCX</th>
<th>CCY</th>
<th>CTEMP</th>
<th>CRI</th>
<th>LPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>18.27</td>
<td>604.1</td>
<td>0.3968</td>
<td>0.3895</td>
<td>3684</td>
<td>83</td>
<td>94.5</td>
</tr>
</tbody>
</table>

Able to achieve 90+ LPW in remote phosphor config. (using Blue LEDs)

Manuf. costs reduction target met