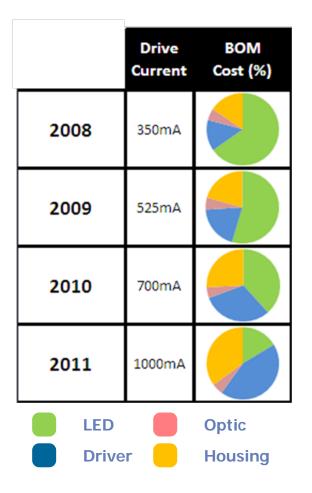


LED Chip & Package Manufacturing -Development for Application Impact

June 6, 2013 Paul Fini, CREE Inc.

LED Chip and Package Mfg. – Relevant DOE Tasks

- M.L4 Tools for Epitaxial Growth
 - Tools, processes and precursors to lower cost of ownership and improve uniformity.
- M.L5 Wafer Processing Equipment
 - Tailored tools for improvements in LED wafer processing.
- M.L6 LED Packaging
 - Back-end processes for packaged LEDs and improved processes and/or equipment to optimize quality and consistency and reduce costs.


• M.L7 - Phosphor Manufacturing and Application

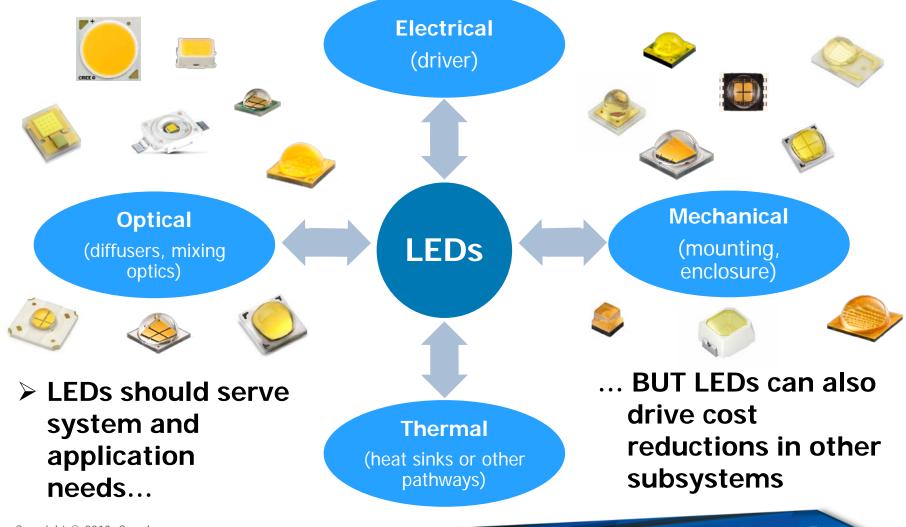
 Efficient manufacturing and improved application of phosphors (including alternative down converters)

LED Cost Contribution to Luminaire BOM

A moving target with respect to overall BOM

- 4,000 Im LED Area Light
- Includes optics, LED cost, reduction of LED count, driver, housing
- Can we assume that LED % of BOM will continue to fall?

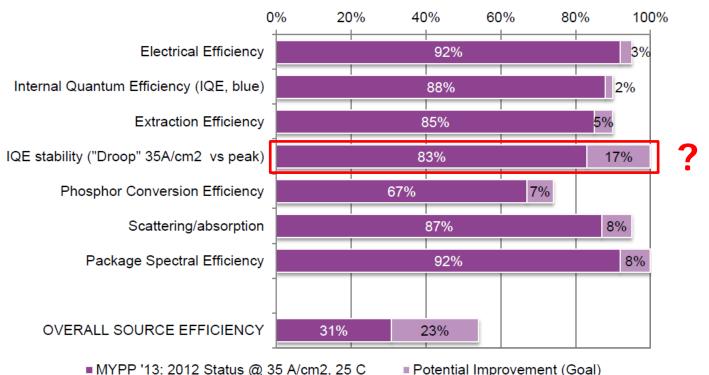
LEDs in Various Applications


 The value that LED characteristics add to the system varies widely by application

Value		OUTPUT & CONTROL		QUALITY OF LIGHT		RELIABILITY	
		Flux and Efficacy	Optical Control	Color Quality (CRI)	Color Consistency	Color Stability	Lumen Maintenance
INDOOR	Omnidirectional, A-bulb						
	Accent, Track, PAR, MR bulb						
	Ceiling-mounted, Recessed						
	Linear, Commercial, Retail						
	Industrial, High Bay						
OUTDOOR	Roadway, Parking, Bollard						
	Landscape						
PORTABLE	Consumer						
	High-end, High-output						

LEDs vs. Other Luminaire Subsystems

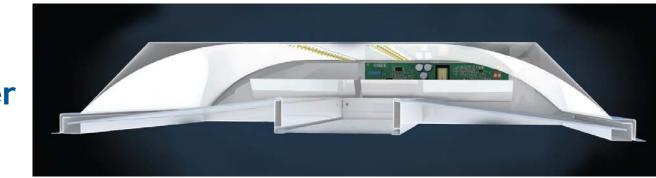
LED requirements directly affected by other subsystems



Copyright © 2013, Cree Inc.

Chips – is Blue "there"?

- Most LEDs contain blue chip + Y/G/R phosphor blend
 - Blue chip IQE: estimated at ~80-90%
 - Blue chip extraction efficiency: ~80-90%
 - EQE: incremental progress from here



Blue Chip Droop

- How important is blue EQE current droop?
 - Depends on system implementation, cost constraints

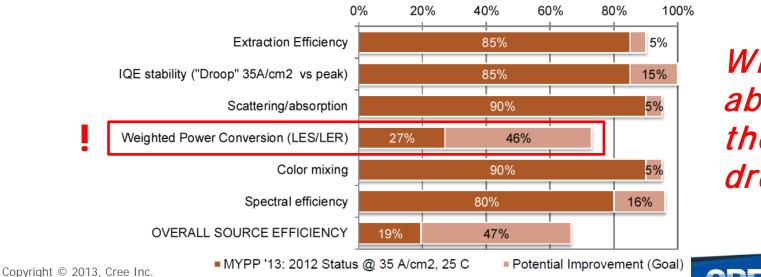
MR16

Troffer

YoY blue chip cost reductions: easier to negotiate LED efficacy/cost with system cost constraints

> "Throw epi at the problem" ?

Copyright © 2013, Cree Inc.

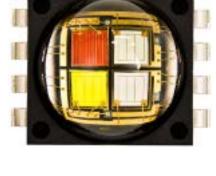


What about Red/Green/Amber?

 DOE MYPP anticipates that RGBA efficacy will be superior to blue + phosphors

	Co	olor-mixe	Phosphor-converted				
ССТ (К)	Efficacy for 67% Conversion (Im/W)			Efficacy for 54% Conversion (Im/W)			
	CRI 70	CRI 85	CRI 90	CRI 70	CRI 85	CRI 90	
5000	255	245	239	189	182	179	
3800	273	261	254	199	190	189	
2700	287	273	264	211	200	196	

Where will efficiency come from? Green, Amber, Red?



What about thermal droop?

Multi-Color Mixing and Controls

- Will RGBA color mixing require closed-loop control?
 - *e.g.* within fixture: centralized sensor in (and specific to?) luminaire
 - *e.g.* within LED package: desirable for "universal" implementation
- Intra-package color mixing/control
 - <u>Cost</u> adder for color sensor(s) and circuit?
 - Space constraints
 - Absorption of light (*e.g.* of blue light by red chip)
- Application and system requirements will steer intra- vs. extra-package mixing and control

- LED chips and packages must be designed and implemented with system and <u>application</u> requirements in mind
- LED characteristics can directly benefit cost reduction in other subsystems
- Multi-color chip solutions may bring efficacy benefits and added features, but also trade-offs
- The biggest challenge in the RGBA approach appears to be red, green, and amber chip efficiency (and thermal droop?)

Q & A

www.cree.com