

NEW EFFICIENT, COMPACT VEHICULAR LIGHTING SYSTEM USING HIGH-POWER SEMICONDUCTOR LASER DIODES

By Dr. Abdel Hanafi, Dr. Helmut Erdl and Dipl.-Ing. Stefan Weber

VEHICULAR LIGHTINGS SYSTEMS

Q M &

 Combustion engine (typ. temperature surrounding a headlamp ranges from -40°C up to 85°C)

• Hybrid (depends on the batteries efficiency and their location)

• Electrical (depends on the batteries efficiency and their location)

Hanafi et al., Laser light, BMW ek-430, 30.01.2014

VISIBILITY & SAFETY: AUTOMOTIVE LIGHTING FUNCTIONS

Bird view representation of different lighting functions

EXAMPLE: ECE LOW-BEAM ILLUMINATION PATTERN

Luminous intensities are defined in a series of defined points with a tolerance

- Non-homogeneous light distribution in the far-field
- Hotspot Luminous Intensity ~ 30000cd
- Contrast ~ 20:1

	Regulation: E0	Regulation: ECE low beam R112 Class A headlamp ES							
	name	value OK	min	max	test pos./area	ט טעט ט	found pos.		
	name	[1x/25]		[1x/25]	test pos./area	[deg]	[deq]		
	B 50 L	0.01 OK	0.00	0.40	-3.4,0.6				
	75R	24.63 OK	6.00	==	1.1,-0.6				
	75L	5.32 OK		12.00	-3.4,-0.6				
٧	50L SeoR	13.14 OK 40.35 OK	6.00	15.00	-3.4,-0.9 1.70.9				
	25L	16.41 OK	1.50		-9.01.7				
	25R	14.54 OK	1.50		9.0,-1.7				
	HV	0.38 OK		0.70	0.0,0.0				
	Z III	0.43 OK		0.70			1.1,0.3		
	Z IV	12.61 OK	2.00	==	-5.2,5.2 / -				
	Z I<20	37.96 ?? 0.05 ??	0 20	20.00	-6.0,6.0 / -		2.5,-1.7		
	P1+P2+P3 P4+P5+P6	0.05 ??	0.30 0.60		.0,4.0 ; 0.0,4.1 .0,2.0 ; 0.0,2.1				
	P1	0.03 OK	0.00	0.70	-8.0.4.0	0 , 4.0,2.0			
	P2	0.01 OK		0.70	0.0.4.0				
	P3	0.01 OK		0.70	8.0,4.0				
	P4	0.01 OK		0.70	-4.0,2.0				
	P5	0.00 OK		0.70	0.0,2.0				
	P6 P7	0.00 OK 0.03 ??	0 10	0.70 0.70	4.0,2.0				
	P8	0.03 ??	0.10 0.20	0.70	-8.0,0.0 -4.0,0.0				
	grad H 5L-5R	0.74 OK	0.08	0.70	-5.0.5.0 / -	0 2 =0 2	-0.50.1		
	grad 2.5L	0.69 ??	0.13	0.40	-2.52.5 /		-2.5,-0.3		
	grad 1R	0.85 OK	0.08		1.0,1.0 /	-2.0,2.0	1.1,0.3		
	grad 2R	0.72 OK	0.08		2.0,2.0 /		2.1,0.7		
	grad 3R	0.62 OK	0.08		3.0,3.0 /	-2.0,2.0	3.1,0.9		
- 1									

MOTIVATIONS: VISIBILITY & SAFETY ENHANCEMENT

GOAL: Extending the visibility range to the maximum tolerated by the regulations

1 iso-lux line at 300m

Visibility range corresponding to an LED high-beam

Visibility range corresponding to a low-beam

MOTIVATIONS: VISIBILITY & SAFETY ENHANCEMENT

LED highbeam provides 85lux on the road

Low-beam provides 48lux on the road

Hanafi et al., Laser light, BMW ek-430,

30 01 2014

MOTIVATIONS: VISIBILITY & SAFETY ENHANCEMENT

The central luminous intensity can be described as following *:

$$I_{hot\text{-}spot} = A N \eta L_{source}$$

Ihot-spot: luminous intensity of the hot-spot

A : lit aperture of the secondary optics

N : number of the emitting points (or chips)

η : 'collection' efficiency

(Ratio of the luminous flux on the road to the luminous flux produced by the light source)

Lsource: luminance of the source

NOTE: the equation was derived assuming no aberrations

⁻⁻⁻⁻⁻

^{*} J. Jiao and B. Wang, "Étendue Concerns for Automotive Headlamps Using White LEDs" in *Third International Conference on Solid State Lighting 234*; Proc. SPIE 5187, 234-242, (2004).

PRINCIPLE (I)

- 2 -- PHOSPHOR ASSEMBLY:
- Phosphor material:
- Cooling system of the phosphor to avoid limitations due local heating such temperature quenching.

- 1-- LASER DIODE ASSEMBLY:
- High-power blue laser diode:
 - 440nm $\leq \lambda \leq$ 460nm @ -40°C \leq T₀ \leq 80°C
 - Power: 1W 1.5W @ -40°C ≤ T ≤ 80°C
- Primary optics : Collimating/Finite Conjugate Lens

4 -- SECONDARY OPTICS:

Engineering the illumination pattern in the far-field

THERMAL EFFECTS

High-power blue laser diode Continuous wave driving mode

PRINCIPLE (II)

IMPLEMENTATION

PHOSPHOR ASSEMBLY

W the

OPTIMIZED PHOSPHOR

PERFORMANCES

O M 4

- Lambertian
- FWHM 350µm
- Phosphor conversion efficiency is about 300lm/W
- Quenching temperature is over 220°C

spatial distribution

	Units	High-luminance laser-based white light source	Automotive certified pc- LED
Luminous Flux	lm	741	200
Peak Luminance	cd/mm²	3000	n.a.
Averaged Luminance	cd/mm²	834	40-49
Emitting surface	mm	0.35	1

BROADBAND SPECTRUM

ECE COLOR COORDINATES

High-Beam Laser-Light Booster Integrated in BMW I8

LED low-beam

LED high-beam

LED high-beam combined with the laser-based spot (laser booster)

SUMMARY

- → The newly developed high-luminance white phosphor-converted point source has a:
 - Luminous flux 741lm @25°C (500lm @80°C);
 - Average Luminance 834cd/mm² @25°C (560cd/mm² @80°C);
 - Efficacy: 43lm/W @25°C (33lm/W @80°C);
- → The source was used in an illumination system having a:
 - Collection efficiency ranging from 55% to 75%

 - Quasi-collimated output beam: ±2°
- → High-beam Laser-light Booster enables to :
 - reach the maximum illuminance value of 344lux tolerated by the ECE regulations (§6.22.9.4 of the ECE Regulation N° 48 Rev 9) was reached
 - extend the range of visibility up to 600m, ...
 - ... from within a small package

FUTURE ...

- → New lighting functions such as marking lighting
- → Market vs. regulations:
 - 344lx ECE vs. 128lx SAE
 - night vision system in automotive sector
 - adaptive functions
- → Dependence on the GaN technology (in general) and the blue laser diode technology (in particular):
 - WPE of the blue laser diode increases from 25% to 37%
 - Wafer size & COST

