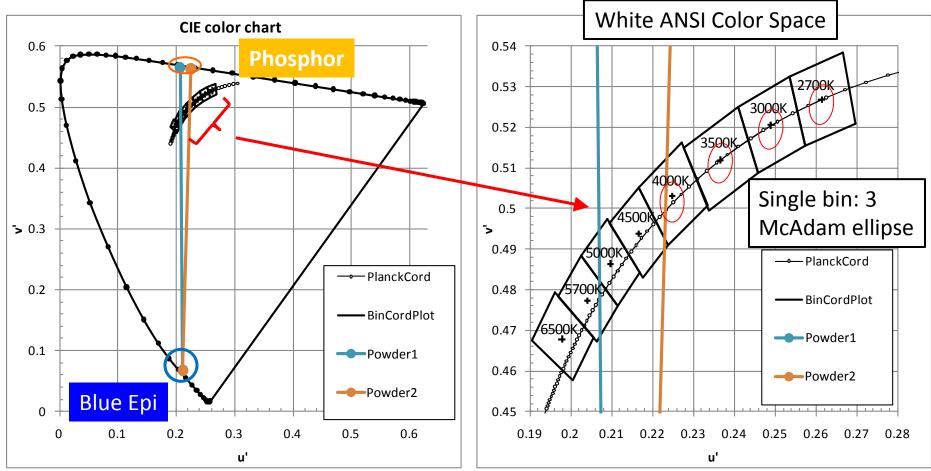
LED Color Conversion Phosphors + Matrix + Application

Jim Neff Philips Lumileds 06 MAY 2014

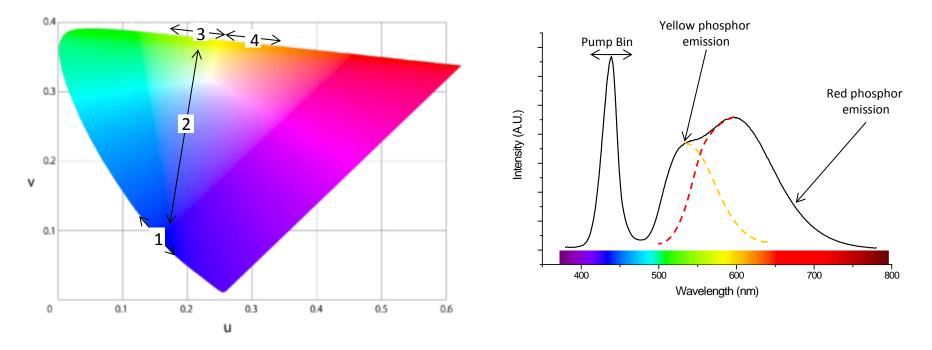

> PHILIPS LUMILEDS

Outline

- Introduction to LED color conversion systems
- Problem of platform scalability
- The quest for single-bin solutions
- Converter cost
- Converter reliability
- Conclusions

Phosphors, Color Control, & Platform Scalability

Combine phosphor & epi to make white LEDs

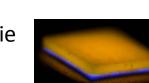

High-mix manufacturing – a full-range product platform involves:

• (6-8 CCTs) x (2-4 CRI) = <u>~24 phosphor solutions per LED platform</u>

philips
LUMILEDS

3

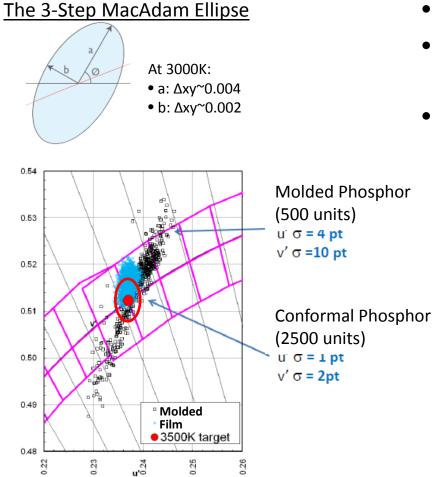
LED Color Point & CRI Control


LED color point & CRI:

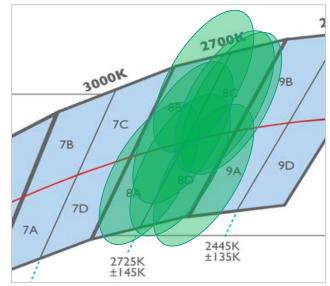
- 1. Choice of pump wavelength (LED Bin)
- 2. Conversion strength of phosphor: phosphor loading & thickness control
- 3. Green phosphor color point (yellow/green phosphor choice)
- 4. Red phosphor color point (red phosphor choice)
- 5. CRI is improved by 'filling the spectrum'

Given A Spoonful Of Phosphor Powder & A Blue LED, How Can You Make A White LED?

- Mix phosphor with silicone and dispense onto the LED die 1.
- 2. Deposit the phosphor using a wet chemical deposition process, infuse with silicone
- 3. Make the phosphor into a platelet, place it on top of LED die
- Mix it with silicone and mold onto the LED die 4.
- 5. Mix phosphor with silicone and form a conformal coating on the LFD die



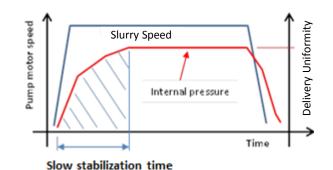
LUMILEDS

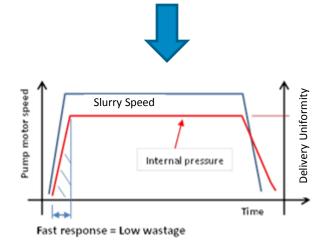

The Quest for Single-Color-Bin Solutions

Customers want this ...

But we deal with this ...

- Pump A distribution
- Phosphor color point distribution
 - Vendors: typical $\Delta xy = \pm 0.005$
- Tester issues:
 - Color point resolution ($\Delta xy = \pm 0.0015$)
 - Calibration ($\Delta xy = \pm ???$)




6

LED Converter Cost

- Phosphors are expensive materials
 - Cost measured in k\$/kg
 - Significant portion of packaged LED cost
- Phosphor powder batch-to-batch variations are major cost adder
 - Variations of particle size distribution
 - Color point variation (composition)
 - New batches must be 'qualified'
 - Trial and error mixing approach to develop transfer functions
 - Much material wasted finding 'sweet spot'
- High-mix product environment leads to material inefficiency
 - Desire mixing/application systems that can quickly dial-in and stabilize a given color point

7

LED Converter Reliability

- A 'brighter' LED also brings:
 - Higher photon flux
 - Dissipation of higher thermal loads by phosphor + matrix
- Most common LED phosphor materials are quite reliable
 - QDs are an exception, but reliability improving
- Silicone matrix materials are being pushed to their limits
 - VOC-induced transient browning
 - Thermally-induced permanent browning
 - Silicone cracking

8

– LM-80 compliance

Conclusions

- High-mix CCT/CRI environment creates a scalability problem
 - Must maintain many color converter recipes across product platforms
- Many color converter application methods
 - Often where manufacturers differentiate from each other
- Color converter solutions are a significant portion of the packaged LED cost
 - Phosphor material variations lead to much wastage of expensive materials
- Converter matrix materials are the reliability weak link
 - Could push LEDs harder if silicones could keep up...
 - Cracking & browning over 10k+ hours, thermal cycling

