PHILIPS LUMILEDS sense and simplicity

High-Power Warm-White Hybrid LED Package for Illumination

Wouter Soer, Guan Huang, Frank Jin, Han Ho Choi, Dave Kharas, Henry Choy, Frank Wall

January 30, 2013

The warm-white Im/W gap

Warm-white Im/W performance lags behind cool-white by ~30%

Hybrid LEDs

Approach

Combine phosphor-converted off-white LEDs and direct red LEDs in one package

Benefits

- · Stokes loss associated with pc-red avoided by using direct red
- · Strong emission in red with minimal emission wasted in infrared
- \rightarrow high efficacy and high CRI

Project objective

Objective: develop a warm-white hybrid LED package for general illumination

- High efficacy: 140 lm/W and 700 lm at $T_i = 85 \text{ °C}$
- Warm white: CCT 2700-3500 K
- High CRI: CRI>85

oday (85 °C	, 350 mA)		
CRI	Efficacy		
80	120-135 lm/W		
80	100-115 lm/W		Project goal:
90 🤇	85-95 lm/W		140 lm/W
	oday (85 °C CRI 80 80 90	Oday (85 °C, 350 mA) CRI Efficacy 80 120-135 lm/W 80 100-115 lm/W 90 85-95 lm/W	Oday (85 °C, 350 mA) CRI Efficacy 80 120-135 lm/W 80 100-115 lm/W 90 85-95 lm/W

Integrated electronics for hybrid light engine

Design a package that allows the off-white and red LEDs to be driven according to their respective requirements

Key areas of hybrid warm-white LED development

Technical progress since 2012

Computational model

- Generate color point specification for off-white and red LEDs
- Color point and efficacy prediction for the hybrid package

Package development

- Two types of packages developed:
 - Multi-lens array package for non-directional lighting
 - Single-lens array package for directional lighting
- Latest build demonstrated 131 lm/W at 85 °C with CRI 90, R9 88, CCT 2955K and total LOP of 760lm

Reliability study

- Completed preliminary reliability study on prototype packages
- Operation boundary conditions identified

Tj (degC)

Multi-lens warm-white LED package performance

Single-lens warm-white LED package performance

PHILIPS LUMILEDS

Challenges

Color over angle (COA)

- COA shows non-uniformity for the single-lens WW packages
- Need to develop effective primary or secondary color mixing optics for spot light applications

Color point (CP) stabilization

- At constant drive current, CP drifts ~ 1 ANSI bin from cold start to stabilization due to different H/C factors
- Need hybrid driver functionality with integrated feedback to adjust drive conditions to operating environment
- Goal: <3 SDCM during run-up and dimming

Towards a high-quality high-efficiency hybrid light engine

Further efficacy improvement

- Implement epi, device, phosphor and package improvements
- Goal: 140 lm/W (at 85 °C) by September 2013

Integrated hybrid light engine development

- Evaluate various scenarios for hybrid driver integration
- Build on hybrid experience from L-Prize winning bulb
- Goal: develop a hybrid light engine package that enables stable performance over run-up and dimming

Productization

• Define target applications for hybrid package

Hybrid benefits apply to a wide range of applications

- Easily implemented in non-directional lighting due to inherent color mixing
- Primary or secondary color mixing optics needed for directional lighting
- High efficacy provides opportunity for smaller / low-cost heat sink

Conclusions

Hybrid technology closes the "warm-white gap" providing high efficacy at high CRI

This project aims to make these hybrid benefits available in a single LED package

Project accomplishments so far:

- Realized key technology improvements leading to 131 lm/W efficacy
- Developed hybrid packages for directional and non-directional lighting, and performed characterization and preliminary reliability testing

Outlook:

- Further improve efficacy towards 140 lm/W
- Develop integrated hybrid light engine package that enables stable performance over run-up and dimming
- Define target applications for hybrid package productization

