PHILIPS

sense and simplicity

High Efficiency Driving Electronics for General Illumination LED Luminaires

Philips LED Systems
Rosemont, IL

Anand Upadhyay
Ameya Shrotriya, David Moore,
Sanjay Pradhan, Shruti yalamarty
Objective

The objective is to prepare the first of a new generation of LED drivers for production. The products will be switch-mode power supplies, similar to the LED drivers of today, but with new topologies and improved design to yield higher efficiency (≥90%), smaller size (volume less than 6 in³ for a 40W supply: 0.15 in³/Watts) and lower cost ($4.8 for a 40W supply i.e. 12 Cents/Watt, in high volumes).

• The objective of the first phase (Phase 1-A) of the project is to investigate hard-switched, switch-resonant and load-resonant SMPS’s, and select the best topology for the product.
• In Phase 1-B, the objective is to develop the platform for product development with the selected topologies.
• The objective of the second half (Phase 2) of the project is to bring the topology selected in the first half (Phase 1) through a complete development cycle to product release.
Project Timeline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Review conventional topologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Design and model hard-switched and switch-resonant circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Build and test selected hard-switched and switch-resonant circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Identify most promising hard-switched and/or switch-resonant topology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Build and test selected load-resonant circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Compare results and select final topology for product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2: Develop product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Design product from selected topology, according to specifications. Estimate cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Define Quality test plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Perform tolerance analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Conduct PMEA, stress testing, job review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Design completed (1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Complete factory preparations for sample build</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Perform sample build in factory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Test (meet safety, performance, EMC, and stress requirements)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Perform approbation testing (DIL, FCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Execute pilot run (100 units) (1.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Test pilot run units, complete approbation, prepare reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Release product for limited production (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:
1. Low Efficiency
2. Comparable part counts to two stage design with complex control scheme
3. Narrow output voltage range (⇒ narrow application load range)
4. High Cost
5. Highly promising in meeting the requirements
Product Deliverables

We are making following product platforms from this project:

1. 40W Single-stage Flyback 120V/277V:
2. 40W (Intellivolt voltage) dual stage (PFC+LLC):
3. 75W (Intellivolt voltage) dual stage (PFC+LLC):
4. 150W (Intellivolt voltage) dual stage (PFC+LLC):

![Diagram showing the relationship between Fly-Back Topology, LLC Resonant Topology, and Cost Per Wattage ($/W)]
Single-stage Flyback Driver Platform

TRANSITION MODE FLY-BACK LED DRIVER
Comparison between the current and new 40W, 120Vac drivers

<table>
<thead>
<tr>
<th>XITANIUM 120Vac,40W/1.75A-24V</th>
<th>120Vac,37W/0.7A-53V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Current Product)</td>
<td>(New Design)</td>
</tr>
</tbody>
</table>

Cost
- Very High

Size
- Volume of the unit ~ 223cm³
- Volume of the unit ~ 114cm³

Performance
- Efficiency ~ 83%
- Meets 2KV surge rating
- No dimming capability, fixed output current
- Efficiency ~ 90%,
- Meets 4KV surge rating
- Optional 0-10VDC Dimming
LLC Design Platform

Mains Input PFC Stage (Power Factor Correction)

HB driver

Half Bridge

LLC converter (isolated)

LED-array

120 – 277Vac, 60Hz: NAM
230Vac, 50/60Hz: EU, APR

Analogue IC
EMC Performance Improvements/75W

The new topology improves the EMI by about 10 to 15dB across the board, with a smaller EMI filter and 2 layer PCB versus the 4-layer PCB.
Efficiency Improvements/75W

- 75W LLC Driver
- 75W PWM Driver

Efficiency (%) vs. Output Voltage (V)
75W LED Driver Size Improvement

- Current driver housing dimensions are 55mmX210X36mm
- New housing dimensions are 55mmX135mmX36mm
- This means about a 36% size reduction in terms of length and volume.
- The pictures on the right illustrate the decrease in size.
150W LLC LED Driver

(Current PWM based Driver)

Cost
• Close

Size
• PCB board dimensions are 52mm X 206mm.

Performance
• Efficiency : 86 -90%

(New LLC Design)

Cost
• Lower Product Cost

Size
• New PCB Dimension 38mm X 206mm
• 27% reduction in PCB size feasible

Performance
• Efficiency on bench > 90% at all load ranges.
• EMI Improvement >10 dB
PHILIPS

40W LLC LED Driver

(Current PWM based Driver)

Cost
- High

Size
- Dimension 106.7 × 76.4 × 30 mm³.

Performance
- Efficiency: 86-89%

(New LLC Design)

Cost
- Significantly Lower Product Cost

Size
- New driver dimension 124.2 × 43 × 30 mm³
- 34% reduction in size

Performance
- Efficiency on bench > 90% at all load ranges.
- EMI Improvement >10 dB

40 W PFC-Half Bridge driver
(106.7 × 76.4 × 30 mm³)

40 W PFC-LLC driver
(124.2 × 43 × 30 mm³)
Additional Features /Enhancements

- **Rset Interface for customer to set the full load current at any point on the defined Rset curve**
- **Thermal Feedback using NTC thermistor to reduce output current in case of excessive temperature on the LED module**
- **Precise adjustment of the dimming curve from 1V-8V and precise current in the dimming leads to enable the use of resistor for dimming**
- **Shutdown the driver by applying 15V at the dimming leads and very low standby power in shutdown mode (<200mW)**
Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Efficiency Improvement</th>
<th>Size Reduction</th>
<th>Cost Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>40W Flyback 120V</td>
<td>7%</td>
<td>49%</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>40W dual stage LLC</td>
<td>1%-5% (over the load range)</td>
<td>34%</td>
<td>✓✓</td>
</tr>
<tr>
<td>75W dual stage LLC</td>
<td>1%-5% (over the load range)</td>
<td>33%</td>
<td>✓✓</td>
</tr>
<tr>
<td>150W dual stage LLC</td>
<td>1%-5% (over the load range)</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>