Introduction to Measurement & Verification in Federal ESPCs

What you don't measure, you can't manage.

What is M&V, and why do you need it?

- M&V refers to any activities aimed at determining whether the savings guarantee is being met
 - The guarantee and annual M&V are legally and contractually required
- When M&V is done well, it will:
 - Reduce uncertainty of the savings estimates to a reasonable level
 - Allocate risks appropriately
 - Potentially identify operations & maintenance issues

Basic M&V Concepts

- M&V methods should balance savings assurance against added cost
- The degree of M&V should be proportional to
 - 1) the ECM's savings; and
 - 2) the ECM's performance risk
- Good M&V plans require ESCOs to measure the key performance parameters of ECMs
- If the M&V plan is weak, the guarantee may be met only on paper

FEMP Guidance on M&V

(items 2, 6, 8, and 9 in the "Resources" section of FEMP's ESPC Web site)

- FEMP M&V Guidelines v. 3.0
 - M&V specifically for federal energy projects
 - Application of the International Performance
 Measurement and Verification Protocol (IPMVP)
- Introduction to M&V for FEMP ESPC Projects
- Guidance on government witnessing of M&V
- Guidance on reviewing M&V reports

M&V in the ESPC Process (more on this in Phases 4 & 5)

Baselines

Defined in IGA and Proposal

M&V Plan

Developed as part of Proposal

Post-Installation M&V Report

 Verification of ECMs' ability to perform

Annual M&V

- Activities per M&V Plan
- Findings documented in M&V reports

Baselines

- Typically proposed for each ECM by ESCO as part of investment grade audit; agency reviews/approves
- Baselines are compared to post-installation energy use to determine savings
- Once project is installed, it's difficult or impossible to revisit baselines, so properly defining them is important
- Baselines may vary with changes in weather (or other factors, potentially)
 - e.g., gas usage = 2500 MMBtu + 46 \times (Heating Degree Days)

Savings Guarantee

- Savings must exceed payments
 - This is cardinal rule of federal ESPC
 - DOE has interpreted this to mean that savings must exceed payments in each year
- Savings that may be used to pay the ESCO:
 - Energy and water cost savings
 - Energy/water-related cost savings

Energy and Water Cost Savings

- Reductions in system use
- Efficiency improvements
- Reductions in peak demand
- Reductions in energy rates
- Shifting time of use to lower-cost periods
- Switching to less expensive fuels
- Self-generation (including cogeneration/CHP)
- Reduced water and sewer use
- Reduced sewer charges (e.g., due to irrigation)

Energy/Water-Related Cost Savings

Most commonly reduced O&M expenses

- Parts and repair costs
- Equipment replacement costs
- O&M contracts and other labor

Cost savings must be real

- If labor savings are claimed, agency must demonstrate contract or staff reductions
- Reducing tasks of existing staff does not count

Other Sources of Savings (and thus payments)

Cost avoidance provided by the project

 Example: Including chiller replacement funds in project where funds were planned to be paid out of repair & replacement budget in early year of project

Construction period energy savings

 Savings accrued from ECMs that are installed and performing in advance of project acceptance

More info on acceptable sources of savings:

 Practical Guide to Savings and Payments in Federal ESPC Projects, in "Resources" section of ESPC Web site

Calculating Savings

- There are two components to energy use
 - Rate of energy use (e.g., watts of lamp)
 - Usage (hours of use)
- Energy use is the product of the two
 - Example: $4 \text{ kW} \times 2 \text{ hours} = 8 \text{ kWh}$

Reducing the rate of energy use *or* the usage (hours) reduces the total energy use

Achieving Energy Savings

Savings Uncertainty

- We can't measure savings directly
 - Because it's the absence of something i.e., it's energy use that's not there any more!
- We measure energy use before and after the ECM – the savings is the difference (roughly)
- We usually don't know the exact energy use before and after
 - there is almost always some uncertainty in each
- And even when we do, we can't know for sure what's responsible for all the change

Achieving Energy Savings: The Real Picture

Uncertainty can be reduced, but never eliminated

- Claimed savings are always estimates because savings cannot be measured directly
- Uncertainty is introduced through:
 - Measurement and modeling error
 - Sampling error
 - Simplifying assumptions
 - Other changes at facility
- These factors are inherent in M&V

Savings can be normalized to account for mild or severe weather years. Example: Mild summer in year 5 adjusted to average using TMY.

M&V Options: A, B, C, and D

- Options address risk allocation
- Each ECM assigned an M&V option
- Measurements differ by:
 - Level individual system vs. whole building
 - Duration spot, short-term, periodic, continual
 - Whether key values are held constant without performance period measurement
 - Example: hours of lighting operation may be determined in IGA and then fixed for purposes of savings calculation
 - Expense
 - Up-front ranges from 1 to 15% (avg. 3%) of project investment
 - Annual averages about 3% of annual savings
 - More complex, interactive ECMs justify more M&V effort

FEMP and IPMVP M&V Options

M&V Option	How savings are calculated
Option A: "Retrofit Isolation, Key Parameter" – Based on measurement of <i>key</i> parameter, either equipment performance or operational factors (usually equipment performance)	Engineering calculations using measured and estimated data
Option B: "Retrofit Isolation, All Parameters" – Based on measurements (usually periodic or continuous) taken of <i>all</i> relevant parameters; often entails long-term metering.	Engineering calculations using measured data
Option C: Based on <i>whole-building</i> or facility-level utility meter data adjusted for weather and/or other factors.	Analysis of utility meter data
Option D: Based on <i>computer simulation</i> of building or process; simulation is calibrated with measured data.	Comparing different models

Options A/B vs. Options C/D

Options A & B are retrofit isolation methods.

Options C&D are whole-facility methods.

The difference is where the boundary lines are drawn.

Energy Prices and ESPC

- When energy prices go up, savings appear to evaporate, because total <u>utility</u> costs go up
- What is the actual effect of <u>per-unit</u> energy price increases on ECMs' savings (cost avoidance)?
 - Yes, the bills may go up relative to prior levels, but ...
 - Key issue is what they would be without the ESPC
- ESPC can be seen as a hedge against higher energy prices

What if energy prices increase?

- Cost Savings (Avoided Costs from ESPC)
- Energy Savings (Avoided Energy Use from ESPC)
- Facility Energy Use
- Facility Energy Cost

Best M&V Practices During Project Development

- Understand ESCO's perspective
 - They're guaranteeing performance is closer inspection (i.e., more M&V) in their interest?
- Recognize that goal is to reduce uncertainty in savings ... but that adding M&V adds cost
 - Need to balance these two
 - More complex ECMs usually merit more M&V

Best M&V Practices During Project Development

- Make sure that ESCO-proposed baselines and fixed parameters for ECMs are sound
 - Because they are cornerstones of the savings calculation
- Stay involved throughout performance period
 - Review annual M&V reports, stay in touch with ESCO, etc.
 - Take advantage of FEMP's life-of-contract support

Review Questions

Q1: Why is M&V required in ESPC?

A: To verify that guaranteed savings are delivered and ensure that savings persist.

Q2: The degree/cost/rigor of M&V should be proportional to the ECM's ____ and ___.

A: savings and risk

Q3: Identify one source of one-time energy-related cost savings.

A: (1) Cost avoidance when ESPC includes something agency was planning to install itself;

(2) Implementation-period savings from ECMs installed and conditionally accepted early in construction

Review Questions

Q4: We can't directly measure savings, but we *can* measure energy *use*, _____ and ____.
A: before and after
Q5: Name the two retrofit-isolation M&V options.
A: Option A and Option B

Q6: M&V can reduce – but never eliminate –

A: Risk or uncertainty

Next: G – Risk, Responsibility, and Performance Matrix