NASA Ames Research Center Utility Energy Services Contract Project Overview

Federal Utilities Partnership Working Group Philadelphia, PA October 2011

- NASA Ames Research Center (ARC) Energy Challenges
- UESC Project Goals
- Energy and Water Conservation Projects
- **Project Benefits and Results**
- Q&A

NASA's Energy Challenges

- Compliance with federal mandates -EISA, EPAct, Executive Orders (prior to UESC ARC was behind all of its goals)
- Very low electric cost (<\$0.05/kWh)
- Not eligible for electric incentives through local utility (ARC purchases power from WAPA)
- Aging mechanical and electrical infrastructure requiring significant capital investment
- Many renewable projects not economically viable due to low electric cost

NASA Ames Research Center Utility Energy Services Contract

NASA's Energy Challenges

High energy intensity at many of the center's key buildings

NASA AMES - Moffett Field

Distribution of Building Electricity Use Intensity and Annual Electric Use (2008)

Building

- Median energy intensity for typical bldg. similar to ARC's (mix of lab and office) is 21.2 kWh/SF*yr (red line on charts above).
- Average Energy intensity at ARC was 45.7 kWh/SF*yr.

NASA Ames Research Center Utility Energy Services Contract

NASA's Energy Challenges

High energy intensity at many of the center's key buildings!

NASA AMES - Moffett Field Distribution of Building Electricity Use Intensity and Annual Electric Use (2008)

- Median energy intensity for typical bldg. similar to ARC's (mix of lab and office) is 21.2 kWh/SF*yr (red line on charts above).
- Average Energy intensity at ARC was 45.7 kWh/SF*yr.

UESC Project Goals

- Identify economically viable projects that when implemented will help ARC achieve its energy efficiency goals.
- Install a roof mounted photovoltaic system on ARC's new net-zero administration building.
- Replace inefficient boilers throughout the facility that do not meet South Bay Area Quality Management District standards (32 boilers).
- Expand and upgrade the existing Facility Management Control System (FMCS) & implement Retro-Commissioning strategies.
- Procure maximum available utility incentives

ECM 1 – Base-Wide Inlet Guide Vane (IGV) to Variable Frequency Drive (VFD) Retrofits

- Replace less efficient IGV airflow control with more efficient VFD control
- Integrate new VFD into existing base-wide FMCS
- Implement VAV optimization sequences of operation

ECM 2 – Upgrade Indoor Lighting

- Replace existing 1000 W high-bay HID fixtures in buildings 211, 248, and 246 with new energy efficient fluorescent T-5 fixtures
- Retrofit fluorescent T-12 fixtures in buildings 246, 262, with new energy efficient T-8 fixtures equipped with electronic ballast and high efficiency reflectors.
- Install dual technology occupancy sensors to control new highbay T-5 fixtures and indoor T-8 fixtures.

ECM 3 – Upgrade Outdoor Lighting

 Retrofit existing high pressure sodium street light fixtures with new energy efficient Lumecon LED kits.

ECM 4 & 5 – Base-Wide Boiler Replacements

 Replace existing less efficient boilers (>2,000 MMBH) that do not meet South Bay Air Quality Management District standards with new high efficiency modular boilers equipped fully modulating gas valves and advanced FMCS controls interface.

ECM 6 – Steam Plant Retrofits

 De-comission two large steam plants and install new high efficiency hot water boiler plants at buildings / near loads.

ECM 7 – Base-Wide Retro Commissioning and FMCS Upgrades

- Upgrade and expand the existing FMCS to allow for more granular zone control and for the implementation of advanced FMCS control sequences.
- Implement base-wide retro commissioning strategies.
- Develop and implement a Monitoring Based Commissioning (MBCx) program.

ECM 8 – Bldg. 239 VAV & Central Chilled Water Plant Upgrades

- Convert existing constant volume laboratory ventilation system to VAV operation.
- Upgrade existing FMCS to accommodate VAV operation and to maintain life safety standards.
- Implement a chilled water plant optimization strategy that minimizes overall plant energy consumption.

ECM 9 – Bldg. N258 Chilled Water Plant Optimization

- Optimize AHU operation
- Implement demand control ventilation
- Upgrade FMCS controls

ECM 10 – Bldg. N233 Multiple Measures

- Replace less efficient chillers with new high efficiency machines equipped with VFD's and advanced controls.
- Replace oversized condenser water pumps.
- Implement a chilled water optimization control strategy for the central chilled water plant.
- Upgrade the existing FMCS to accommodate the new chillers and optimization control strategies.
- Remove existing fan coils above stairwells and replace with new roof mounted DX units.

ECM 11 – Bldg. N233A Multiple Measures

- Remove existing 3-way valves and re-circulation pumps on existing air handling units (AH-1, 2, and 3).
- Replace existing inefficient boiler with new high efficiency modular boiler.
- Implement a chilled water optimization control strategy for the central chilled water plant.
- Upgrade the existing FMCS to accommodate the new boilers and CHW & HHW plant optimization control strategies.

ECM 12 – Bldg. N232 Photovoltaic System

- Install new 108 kW Sun Power roof mounted PV system.
- Install (2) new inverters.
- Install new Data Acquisition System (DAS).

ECM 13 – Bldg. 245 Chilled Water Plant Upgrades

- Install new high efficiency Turbocor chiller
- Convert pumping to variable flow operation
- Upgrade FMCS

ECM 14 – Base-Wide Domestic Water Fixture Upgrades

Estimated Project Benefits and Costs

Note: The project is currently in construction with an expected completion date of April, 2012

Energy Savings				Annual O&M Savings	Annual Utility Cost Savings	Estimat ed Incentiv e	Constructi on Cost
Demand (kW)	Electricity (kWh)	Nat. Gas (Therms)	Water (kgal)	\$ (000)	\$ (000)	\$ (000)	\$ (000)
957.4	9,095,382	1,291,757	15,779	328	1,648	715	23,865

Project Benefits & Expected Results

- ARC will exceed its mandated energy efficiency goals by 10%.
- 15% reduction in annual energy and operational costs.
- ARC will have new mechanical, lighting, and domestic water fixtures throughout the facility resulting in significant cost savings and avoided future capital costs.
- ARC will have an upgraded FMCS that is expandable and will allow the center to perform proactive energy management and on-going commissioning.
- The new PV system installed as part of this UESC will allow building N232 to attain LEED Platinum status.

Questions & Answers

P

Thank You

Roger Farzaneh **Customer Energy Solutions** (415) 370-5049 mobile (415) 973-1097 office IRF1@pge.com

