Alabama Power – UESC

Activities

FUPWG 10-16-12

UESC Projects Anniston Army Depot - Re-conductor / New Poles – Substation / Switchyard Upgrade Solar Water Heating USDA - Auburn - Lighting Retrofit

- Heat Recovery
- FDA
 - Investment Grade Audit
 - Lighting / Controls / Heat Recovery

UESC Projects

- GSA
 - Lighting Upgrades
 - Mobile and Montgomery Court Houses
- Fort Rucker
 - Generator / Photo Voltaic Project
 - Investment Grade Audit
 - Energy Efficiency Projects
 - Renewables
 - Lighting Sensor
 - Lighting / Controls / Boiler Replacement

Fort Rucker Heat Pump / Boiler Piggyback System 50 Ton HPWH 240 kW Electric Boiler

Heat Recovery

Questions to Consider...

• What is the most efficient boiler you have installed?

- If you were going to reduce Greenhouse gas emissions would you focus on the Heating or Cooling of a building?
- What is an acceptable energy efficiency ROI for a capital investment?

Heat Pump Basics

Heat Rejection

How Does it Work?

Economics

Performance Measurement

Efficiency & COP= Coefficient of Performance

Cost to produce 100,000 BTU Using: \$0.7/kWh \$10/MCF

- Natural Gas Water Heater
 - 100,000 Btu / 80% efficiency / 1000 Btu/ft³ x \$10.00/1000 ft³ = \$1.25
- Natural Gas Boiler
 - 100,000 Btu / 70% efficiency / 1000 Btu/ft³ x \$10.00/1000 ft³ = \$1.43
- Electric Water Heater
 - 100,000 Btu / 99% efficiency / 3412 BTU/hr/kW x \$0.7/kWh = \$2.07

 $COP_{h} = 3.8$ (no cooling credit)

Energy to Serve Your

Heat Pump

- 100,000 Btu / 380% efficiency / 3412 BTU/hr/kW x \$0.7/kWh **\$0.54**
- 100,000 Btu / 670% efficiency / 3412 BTU/hr/kW x \$0.7/kWh = \$0.31

 $COP_{c+h} = 6.7$ (with cooling credit)

Case Studies

Heat Recovery Chiller – Trane 250 Ton Centrifugal - Domestic / HVAC Hot Water

Heat Recovery-Chilled Water Return Loop

Gordon Persons Building - Montgomery Heat Recovery Heat Pump 20 Ton - Domestic Hot Water

Heat Recovery from Cooling Towers

Heat Recovery Heat Pump – American Geothermal

Montgomery Convention Center Heat Recovery Chiller 30 Ton – Domestic Hot Water

Heat Recovery-Chilled Water Return Loop

GKN Aerospace – Tallassee Heat Recovery Heat Pump 560 Ton – Process Heating / HVAC Hot Water

Heat Recovery from Cooling Towers

Heat Recovery Heat Pump - York

GKN Project Details

Proposal –

- Install one (1) 560 ton heat recovery heat pump
- Recover waste heat from cooling towers
- Generate 150°F Hot Water
 - 1,583,672 additional kWh cost = \$96,604
 - Reduce propane consumption by 262,000 gallons

Estimated Installed Cost - \$525,000

Est. Annual Energy Savings -Simple Payback -CO2 Reductions - \$348,800 1.5 Years 3,321,800 lbs. **southern** Exercy to Serve Your World* USA Medical Center - Mobile Heat Recovery Heat Pump 30 Tons – Domestic Hot Water

Heat Recovery from Cooling Towers

Heat Recovery Heat Pump -American Geothermal

• Simple Payback – 1.6 yr

USA Medical Center - Mobile Heat Recovery Heat Pump 250 Tons – HVAC Hot Water

Heat Recovery from Cooling Towers

Energy to Serve Your World®

Heat Recovery Heat Pump – Multi Stack

HVAC Hot Water Needs

Capital - \$443.5k Energy Savings - \$105.2 k /yr Simple Payback – 4.2 yr

Alabama Power Corporate Headquarters Birmingham

Heat Recovery Chiller 120 Tons

Heat Recovery-Chilled Water Return Loop

Heat Recovery Chiller Trane HVAC Hot Water Pre-Cool Chillers

Children's Hospital Birmingham, Al.

Heat Recovery Chiller 800 Tons

Dual Compression Heat Recovery Chiller -York

Heat Recovery- Chilled Water Return Loop

WHAT IS NEXT ? WHAT IS NEXT ?

Projects Underway

- USDA at Auburn University
 - Fisheries Department
 - 35 GPM 24/7
 - Heated to 86°F
 - American Geothermal 40 ton
- UAH Carrier HRC
- Beau Rivage 525 ton HRC
- TAC Variable Speed Drive
 - American Geothermal (2 to 20 ton scroll)
 - Fall Creek Falls State Park Tenn
- FDA Dauphin Island

St Michael's Hospital - Toronto Purpose: Use waste heat exhaust air to heat incoming fresh air

CYKGCGCH6H0-CTCT

- Heat Source Exhaust air at 70°F
- Heat Generated
 min 8,300MBH / 2,400kW
- Inlet air from -40°F to 70°F
- Dual duty operation
 - Heat pump in winter
 - Water chiller in summer

Heat from Exhaust Air

Heat from Exhaust Air

Questions?

