

Wind Energy

FUPWG Meeting Robi Robichaud November 18, 2009

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Topics

Introduction **Review of the Current Wind Market Drivers for Wind Development** Siting Issues Wind Resource Assessment Wind Characteristics Wind Power Potential **Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting** Wind Performance

Current Status of the Wind Industry

Total Global Installed Wind Capacity

Five Years of Strong Growth

2008: 8,558 MW Added; \$16 billion Investment

2009: Over 5,800 MW thru 3 quarters; 5,000 MW under construction

American Wind Energy Association 2 3rd Quarter 2009 Market Report

The total U.S. wind power capacity > 31,000 MW

- Electricity_{to} power the equivalent of ~ 9 million homes
- Avoiding the emissions of 57 million tons of carbon/yr
- Reducing electricity sector carbon emissions by 2.5%

The top five states for new capacity added in 3rd quarter are:

- * Texas 436 MW
- * Oregon 251 MW
- * Illinois 201 MW
- * Colorado 174 MW
- * Wyoming 170 MW

Installed Capacity by State (in MW)

Major Source of New Generation Capacity Additions

Source: EIA, Vent yx, AWEA, IREC, Berkele YLab

other generation technology

Drivers for Wind Power

Declining Wind Costs Fuel Price Uncertainty Federal and State Policies Economic Development Public Support Green Power Energy Security Carbon Risk

Wind Has Been Competitive with Wholesale Power Prices in Recent Years

Source: FERC 2006 and 2004 "State of the Market" reports, Berkeley Lab database, Ventyx, ICE

Note: Wholesale price range reflects flat block of power across 23 pricing locations; wind costs represent capacity-weighted average price for wind power for entire sample of projects built from 1998-2008

The Near-Term Wind has Become Somewhat Less Attractive

- Wind prices are likely to increase further in 2009 as installed costs will remain high as developers work through turbines ordered at peak prices, and given higher equity yields.
- Wholesale price's are also likely to increase as the economic depression reverses course

Natural Gas Price Variability

Renewables Portfolio Standards

Federal Goals:

DSIRE: <u>www.dsireusa.org</u> January₂₀₀₉

- EPAct 2005: 3% by FY09; 5% by FY12 and 7.5% by FY13
- Executive Order 13423: At least 50% new RE, on-site if possible

Windy Rural Areas Need Economic Development

Soaring Demand Spurs Expansion of U.S. Wind Turbine Manufacturing

Wind Industry Added 35,000 Jobs in 2008

FIGURE 19: WIND INDUSTRY EMPLOYMENT

ANNUAL STATISTICS ON U.S. WIND ENERGY | 17

Colorado – Economic Impacts

from 1000 MW of new wind development

Wind energy's economic "ripple effect"

Direct Impacts

Payments to Landowners:

• \$2.5 Million/yr

Local Property Tax Revenue:

• \$4.6 Million/yr

Construction Phase:

- 912 new jobs
- \$133.6 M to local economies **Operational Phase:**
- 181 new long-term jobs
- \$19.3 M/yr to local economies

Indirect & Induced Impacts

Construction Phase:

- 807 new jobs
- \$92.7 M to local economies

Operational Phase:

- 129 local jobs
- \$15.6 M/yr to local

economies

Totals (construction + 20yrs)

Total economic benefit = \$924.3 million New local jobs during construction = 1,719 New local long-term jobs = 310

All jobs rounded to the nearest 50 jobs; All values greater than \$10 million are rounded to the nearest million

National Renewable Energy Laboratory

Construction Phase = 1-2 years Operational Phase = 20+ years

Small Wind Benefits from Favorable Wind Policy

ANNUAL STATISTICS ON U.S. WIND ENERGY

Environmental Benefits

No SOx or NOx No particulates No mercury No CO2 No water

Siting Issues

Avian and other wildlife:

- Over 200 projects, Three problem sites.
- Biggest avian problem was in the Altamont
- Managed by careful site selection.

Wind and Radar Issues - FAA

EERE – Wind and Hydropower Program has Wind Siting Tool web page:

http://www1.eere.energy.gov/windandhydro/federalwindsiting/win d_siting_tools.html

Federal Avi Administrat	ation ion	« OE/AAA
Evaluation	DoD Preliminary Screening Tool	faa.gov Tools: 🕑 Print this page
Diffices ned Cases id Cases nental n 7460-2) zed Cases res ihives for Cases for Airports Review FAQs a Tool	Disclaimer: * The DoD Preliminary Screening Tool enables developers to obtain a preliminary review of potential impacts to Long-Range and Weather Radar(s), Military Training Route(s) and Special Airspace(s) prior to official OE/AAA filing. This tool will produce a map relating the structure to any of the DoD/DHS and NOAA resources listed above. The use of this tool is 100 % optional and will provide a first level of feedback and single points of contact within the DoD/DHS and NOAA to discuss impacts/mitigation efforts on the military training mission and NEXRAD Weather Radars. The use of this tool does not in any way replace the official FAA processes/procedures. Instructions: * Select a screening type for your initial evaluation. Currently the system supports pre-screening on: -Air Defense and Homeland Security radars(Long Range Radar) Weather Surveillance Radar-1988 Doppler radars(NEXRAD) -Military Operations * Enter either a single point or a polygon and click submit to generate a long range radar analysis map. * Military Operations is only available for a single point. * At least three points are required for a polygon, with an optional fourth point. * The largest polygon allowed has a maximum perimeter of 100 miles.	TERREBONE REPEAT IGNAUS MONTREAU CONCUENT ST./EROME MONTREAU CONCUENT ST./EROME MONTREAU CONCUENT ST./EROME MONTREAU CONCUENT ST./EROME MONTREAU CONCUENT ST./EROME
ary ol :ulation Tool :ount gistration	Screening Type: Long Range Radar V Geometry Type: Single Point V Point Latitude Longitude Deg Min Sec Dir Deg Min Sec Dir 1 44 58 43 N V 74 44 32 W V Horizontal Datum: NAD83 V Submit Man Legend:	KINGSTON COMPANY COMPA
s olicy	 Stream No anticipated impact to Air Defense and Homeland Security radars. Aeronautical study required. Yellow: Impact likely to Air Defense and Homeland Security radars. Aeronautical study required. Impact highly likely to Air Defense and Homeland Security radars. Aeronautical study required. 	BYRACUSE UTTER

https://oeaaa.faa.gov/oeaaa/external/gisTools/gisAction.jsp?action=showLongR angeRadarToolForm

Wind and Radar Issues - NEXRAD

Federal Aviation « OE/AAA Administration **DoD Preliminary Screening Tool** faa.gov Tools: 🕒 Print this page Disclaimer: Offices The DoD Preliminary Screening Tool enables developers to obtain a preliminary review of potential impacts to Long-Range and Weather Radar(s), Military Training Route(s) and Special Airspace(s) prior to official OE/AAA filing. This tool will ined Cases produce a map relating the structure to any of the DoD/DHS and NOAA resources listed above. The use of this tool is 100 % optional and will provide a first level of feedback and single points of contact within the DoD/DHS and NOAA to discuss ed Cases impacts/mitigation efforts on the military training mission and NEXRAD Weather Radars. The use of this tool does not in nental any way replace the official FAA processes/procedures. n 7460-2) ized Cases Instructions: Select a screening type for your initial evaluation. Currently the system supports pre-screening on: /es -Air Defense and Homeland Security radars(Long Range Radar) ST-JÉRÔME TERREBONNE REPENTION -Weather Surveillance Radar-1988 Doppler radars(NEXRAD) thives ST-HYACINTHE MC -Military Operations UEUI for Cases Enter either a single point or a polygon and click submit to generate a long range radar analysis map. ATINEAU Military Operations is only available for a single point. for Airports At least three points are required for a polygon, with an optional fourth point. The largest polygon allowed has a maximum perimeter of 100 miles. Review FAOs GREEN a Tool iary Screening Type: Geometry Type: NEXRAD Single Point loi Point Latitude Lonaitude culation Tool Dir Dea Min Sec Dir Dea Min Sec KINGS 44 58 43 N Y 74 w 🗸 Horizontal Datum: NAD83 🗸 distration Submit Map Legend: Minimal to no impact to Weather Surveillance Radar-1988 Doppler (WSR-88D) weather radar operations, National ROCHESTER Telecommunications & Information Administration (NTIA) notification advised. VRACUSE Yellow: RLOS Coverage At or Below 130m AGL. Impact likely to WSR-88D weather radar operations. Turbines likely in For more information, or to discuss the screening results, please contact NOAA at radar line of sight. Impact study required. NTIA notification advised. olicy wind.energy.matters@noaa.gov /isory Blue: RLOS Coverage At or Below 160m AGL. Impact likely to WSR-88D weather radar operations. Turbines likely in radar line of sight. Impact study required. NTIA notification advised. acy Gold: RLOS Coverage At or Below 200m AGL. Impact likely to WSR-88D weather radar operations. Turbines likely in radar Reporting line of sight. Impact study required. NTIA notification advised. for the Sky Red: Impact highly likely to WSR-88D weather radar operations and wind turbine electronics. Turbines likely in radar line n Contacts of sight. Aeronautical study required. NTIA notification strongly advised. onal

Wind and Radar Issues - DoD

Federal Aviation Administration

Evaluation	DoD Preliminary Screening Tool	faa.gov Tools: 🖻 Print this page
Offices ined Cases ad Cases mental n 7460-2) ized Cases res chives i for Cases i for Cases i for Airports r Review FAQs a Tool	 Disclaimer: The DoD Preliminary Screening Tool enables developers to obtain a preliminary review of potential impacts to Long-Range and Weather Radar(s), Military Training Route(s) and Special Airspace(s) prior to official OE/AAA filing. This tool will produce a map relating the structure to any of the DoD/DHS and NOAA resources listed above. The use of this tool is 100 % optional and will provide a first level of feedback and single points of contact within the DoD/DHS and NOAA to discuss impacts/mitigation efforts on the military training mission and NEXRAD Weather Radars. The use of this tool does not in any way replace the official FAA processes/procedures. Instructions: Select a screening type for your initial evaluation. Currently the system supports pre-screening on: 	285) 625 A 661 Williamstown A (300) 2500 MSL 56 St Andrews 430 489 56 St Andrews 430 594 49 St Andrews 594 594 595 St Andrews 522 1295 49 St Andrews 522 129 50<
count gistration Resources rs Policy visory acy acy Reporting	Screening Type: Military Operations Geometry Type: Single Point Point Latitude Longitude Deg Min Sec Dir 1 44 58 43 N 74 44 32 W Horizontal Datum: NAD83 N 74 44 32 W N Submit NAD83 N 74 44 32 W N The preliminary review of your proposal does not return any likely impacts to military airspace. Please contact David Brentzel at the USAF Regional Environmental Coordinator at (404)562-4211 for confirmation and documentation. The preliminary review of your proposal does not return any likely impacts to military airspace. Please contact Anthony M. Parisi, PE at the USN Regional Environmental Coordinator at (805)989-9209 for confirmation and documentation. The preliminary review of your proposal does not return any likely impacts to military airspace. Please contact LTC Jeff Mowery at the USA Regional Environmental Coordinator at (404)305-6915 for confirmation and documentation. The preliminary review of your proposal does not return any likely impacts to military airspace. Please contact Mr. Paul Friday at the USMC Regional Environmental Coordinator at (910)322-2128/449-9791 for confirmation and documentation.	Any questions interpreting the map, please email Steve Sample with your question/s and phone number at steven.sample@pentagon.af.mil
for the Sky	This is a preliminary review of your proposal and does not preclude official FAA processes. Your search data is not retained and the privacy of all your searches is assured.	

« OE/AAA

FAA Radar and Proposed Wind Development

Radar Interference

- Wind Towers, Nacelles, and Blades all Reflect Radar Energy
- The Rotation of Wind Turbine Blades causes Doppler Reflections
- Wind Towers have a RCA greater than a 747, but so does a large high voltage tower

Radar Mitigation

Key issues currently being addressed

- Develop Wind-Radar Checklist
- Expand Mitigation Toolbox
- Provide Outreach
 - Integrate screening tools
 - Educate developers on processes and risks
- Plan FY-08 Case Studies and R&D Elements
- Coordinate with Manufacturers of Stealth Turbines
- Support Field Tests (Mitigation and Stealth Technologies)

Transmission

- Limitations
- Grid Access
- System studies
- Allocation of available capacity
- Scheduling and costs for usage

DOE work is underway to develop large scale transmission to take energy from the high resource areas to the high load areas. BPA, WAPA and OE working to facilitate planning and development activities.

Additional Considerations

Policy

- Encourage economic development and use of local resources
- Facilitate "green" markets
- Federal, state and local incentives such as the:
- Production Tax Credit (PTC) extended to 2012
- 30% Investment Tax Credit (ITC) or cash grant in lieu of the PTC,
- Renewable Portfolio Standards (RPS)

Remote Systems

- Amount of energy from wind
- Control of system voltage
 and frequency
- Use of excess wind energy

External Conditions

- Lightning
- Extreme Winds
- Corrosion
- Extreme temperatures

Intermittency

- Operational Impacts ancillary services including voltage/VAR control, load following, etc.
- 10-20% of system capacity is reasonable; some countries have gotten to 30%

Wind Resource Assessment

Location Wind characteristics Collect & analyze wind data Energy estimates & uncertainty

3 Most Important Factors when Siting Wind Turbines

Wind Power Density Classes

Wind Power Classification							
Wind Power Class	Resource Potential	Wind Power Density at 50 m W/m ²	Wind Speed ^a at 50 m m/s	Wind Speed ^a at 50 m mph			
3 4 5 6 7	Fair Good Excellent Outstanding Superb	300 - 400 400 - 500 500 - 600 600 - 800 800 - 1600	6.4 - 7.0 7.0 - 7.5 7.5 - 8.0 8.0 - 8.8 8.8 - 11.1	14.3 - 15.7 15.7 - 16.8 16.8 - 17.9 17.9 - 19.7 19.7 - 24.8			

Site Assessment

Basic steps to select a site:

- Prospecting evidence of significant wind (wind maps or physical)
- Transmission/distribution lines?
- Road access?
- **Environmental concerns?**
- Military, NEXRAD & FAA radar?
- Military & Civilian airports?
- Electricity market (sufficient on-site load)?
- Receptive community?

Wind Data Sources

•Wind maps Regional wind atlases Biological indicators (vegetation) Environmental monitoring data Airport data Local knowledge

Data Sources

Experiential Assessment of the Data – MET tower

- Widely practiced in the U.S.
- Experience required
- Subjectivity depends on amount of data
- Data intensive
- Characterize the prospective turbine locations
- Computer Modeling FirstLook; windNAVIGATOR
 - Several widely used software packages
 - Similar results from all
 - Experience required
 Best suited to benign terrain
 - May require less wind data
- Combination

Micro-Siting

Obstruction of the Wind by a Building – Turbulence Impact

Wind Turbine Siting Matters

- Wind varies year-to-year, site-to-site.
- Developers want sites that maximize the wind resource, minimize risk
- Thorough assessment helps to minimize, not eliminate, the risk
- Uneven heating of the earth surface causes wind
 - seasonal change in vegetation can affect the wind seasonally snow cover vs. dark green foliage vs. brown foliage vs. no foliage
 - terrain features like large valley can have upslope winds in morning and downslope winds in afternoon
 - drought or forest fire can impact winds generated from surface conditions
 - other earth system features impact wind irregularly El Nino
- Terrain impacts wind
 - canyons, terrain undulations, trees/forests, buildin gs can contribute to turbulence which dissipates the wind
Wind is Very Area Specific

Wind in the west is driven primarily by topography

Access to ridges and mesa tops are critical to economic wind production

Siting makes a difference – for one or multiple turbines in both complex or simple terrain

Class 3 vs Class 6 Wind Site

Class 3 – at 50m – wind speeds 6.4 – 7.0 m/s Mean wind speed of 6.7 m/s used for calcs

BASE CASE - CLASS 3 WIND		
Annual Energy	2,085,849	kWh/yr
Annual Revenue/turbine	\$125,151	\$/yr/turb
Wind Farm Size	300	Mv v 💊
Annual Revenue/Farm	\$25,030,184	\$/yr/farm

What is means :

Class 3 site = 150 turbines Class 6 sites = 58 turbines

Need 159% more wind turbines at Class 3 site

Class 6 – at 50m – wind speeds 8.0 – 8.8 m/s Mean wind speed of 8.4 used for calcs

CLASS 6 WIND		
Annual Energy	5,025,063	kWh/yr
Annual Revenue/turbine	\$301,504	\$/yr/turb
Wind Farm Size		MW
Annual Revenue/Farm	\$60,300,755	\$/yr/turb
Increase in Rev/Yr	\$37,763,470	\$/yr/farm
Energy & Rev Increase	167.6%	

The revenue "increase" at this Class 6 site is greater than "annual revenue" at Class 3 site !

Importance of Wind Resource Assessment

Not All 7 m/s Sites are the Equal !

BASE CASE - STEADY WIND		
Annual Energy	1,878,107	kWh/yr
Annual Revenue/turbine	\$112,686	\$/yr/turb
Wind Farm Size	300	MW
Annual Revenue/Farm	\$22,537,284	\$/yr/turb
WIND SPEED AT 5 - 7 - 9 N		
Annual Energy	2,466,956	kWh/yr
Annual Revenue/turbine	\$148,017	\$/yr/turb
Wind Farm Size	300	MW
Annual Revenue/Farm	\$29,603,471	\$/yr/turb
Increase in Rev/Yr	\$7,066,187	\$/yr/farm
Energy & Rev Increase	` <u>3</u> 1.4%	
WIND SPEED AT 3 - 7 - 11 M	I/S	
Annual Energy	3,912,763	kWh/yr
Annual Revenue/turbine	\$234,766	\$/yr/turb
Wind Farm Size	300	MW
Annual Revenue/Farm	\$46,953,158	\$/yr/turb
Increase in Rev/Yr	\$24,415,874	\$/yr/farm
Energy & Rev Increase	108.3%	

Wind energy is kinetic energy

Mass and momentum

Derived from K.E. = $\frac{1}{2}$ mv² P = A x ρ V³/2

- P Power of the wind [Watts]
- A = Windswept area of rotor (blades) = $\pi D/4 = \pi r^2 [m^2]$
- ρ = Density of the air [kg/m³] (at sea level at 15°C)
- V = Velocity of the wind [m/s]

Wind energy is proportional to velocity cubed (V³):

- -If velocity is doubled, power increases by a factor of eight $(2^3 = 8)$.
- –Small differences in average speed cause big differences in energy production.

Actual Wind Turbine Performance

Power from a wind turbine = $C_p \frac{1}{2} \rho A V^3$

- Effect of wind_{spee} d, V (cubed)
- Effect of rotor diameter on swept area $A = p D^2 / 4$
- Effect of elevation and temperature on air density, ρ
- Limits on power coefficient (efficiency): $C_p @ 0.2 0.4$
- Annual Energy from wind turbine
- = Turbine power x # of hours at that wind speed (method of bins)

Capacity Factor (CF)

CF = Actual Energy Production / Maximum Possible Energy

- CF = (Annual kWh) / (Rated Power x 8760)
- CF depends on wind speed distribution and wind turbine
- More wind = higher capacity factors
- Typical CF = 0.15 0.45 [better wind sites have higher CF's]

Example: What Capacity Factor does to 1000 kW (1MW) rated turbine

1000kW (nominal rated) turbine x 0.25 capacity factor x 8760 hours/year = 2,190,000 kWh annual production

NOT 1000kW x 8760 = 8,760,000 kWh

Some call it "0.25 average MW or 0.25MWa turbine"

Wind Applications

Distributed

Homes Farms Small business Remote Applications Schools

Wind Farms Large Central Station Power

Community Projects Large businesses Municipal loads Schools Federal Loads

Basic Wind Turbines

Understanding the wind resource at your location is critical to understanding the potential for using wind energy

- Wind speed
- Wind direction
- Wind speed change with height

Lift and Drag – The different types of wind turbines Power Curves – The performance of wind turbines Power Availability - Power your can get from the wind

Wind Speed

Measured in m/s or mph Varies by the second, hourly, daily, seasonally and year to year Usually has patterns

- Diurnal it always blows in the morning
- Seasonal The winter winds are stronger
- Characteristics Winds from the sea are always stronger and are storm driven.

Wind Direction

Wind Speed and Power Increase with Height Above the Ground

Lift Wind Turbines

Types of Lift Turbines

Classic Drag Devices

Use aerodynamic drag to produce power. Typically have high torque and work well in low wind speeds, but not at high wind speeds. Typically higher costs per kWh.

Large Wind Turbines

Generator/gearbox:

- Induction
- variable speed
- Direct Drive

Control:

- Stall (passive)
- Active pitch
- Power control

Active Yaw control Connected at the transmission or distribution level

Characteristics of Large WTG

Power Types

- Induction (Constant speed)
- Permanent Magnet (Variable speed) using power electronics

Control:

- Stall (passive)
- Active pitch
- Power control
- Active Yaw control

Connected at the transmission or distribution level

Remote monitoring standard

Dedicated maintenance staff for large projects

Power curves

Frequency Distribution

Wind frequency distribution:

Inform us on how many hours per year the wind blows at each wind speed

Top graph – Very few hours that the turbine will be operating

Bottom graph – Many more hours a year that the turbine will be operating

Constant versus Variable speed

Constant speed is cheaper Constant speed is easier to implement Variable speed can collect more energy Variable speed can control loads better

Direct Drive Design

Wind Turbine O&M and Failure Issues

Source: Sandia National Laboratories - http://www.sandia.gov/wind/other/080983.pdf

Federal Wind Capacity

Federal Wind Sites	# of	Turbine	Wind Plant	Install
	Turbines	Size	Capacity	Year
	[#]	[kW]	[kW]	[Year]
San Clemente Island, CA	3	225	675	1998
Guantanamo Bay, Cuba	4	950	3,800	2005
Warren Air Force Base,	1	2,000	2 200	2009
Cheyenne, WY	2	600	5,200	2005
Air Force Ascension Island,	4	225	2 700	1996
St Helena, UK Territory	2	900	2,700	2004
Victorville Prison, Victorville, CA	1	750	750	2005
Campa Williams, Diverton, UT	1	225	225	1999
Camp williams, Riverton, Or	1	660	660	2005
Marine Corps, Barstow, CA	1	1,500	1,500	2008
Total	20		12,010	

Federal Wind Activities - West

Federal Wind Activities - East

Utah Army National Guard Camp Williams, Utah

Figure Vestas V-47 installation at Camp Williams in May 2005

Load: 5.5-6.3 GWh/yr Wind Energy: 1.1-1.2 GWh/yr COE: \$0.035/kWh (2004) Annual Savings: \$40-45k/yr Payback: 25-30 yrs NREL contracted with Vestas for installation of 660kW Vestas V-47wind turbine

Combined with existing 225kW NEG Micon Total capacity = 885kW

Figure 2 Newly installed Vestas V-47 660kW wind turbine at left and NEG Micon 225 kW wind turbine at right.

Army - Fort Carson CO

Ft. Carson Summary

C	~	~	-	
Э	υ	a	d	Г

	40m	50m	60m	70m	80m	90m	100m
Data Points Recov	21193	21175	21078	20834	20398	19768	18909
Ave Spd All Data	5.32	5.65	5.94	6.18	6.40	6.58	6.74
Shear	n/a	0.27	0.27	0.26	0.25	0.25	0.22
Ave Spd January	n/a						
Ave Spd February	n/a						
Ave Spd March	5.96	6.37	6.70	7.03	7.33	7.63	7.88
Ave Spd April	6.02	6.42	6.72	7.00	7.26	7.49	7.68
Ave Spd May	6.29	6.69	7.00	7.28	7.50	7.70	7.83
Ave Spd June	4.98	5.29	5.54	5.80	6.00	6.19	6.39
Ave Spd July	4.57	4.84	5.09	5.27	5.41	5.53	5.61
Ave Spd August	4.68	4.98	5.27	5.51	5.71	5.90	6.04
Ave Spd Septemb	4.80	5.08	5.36	5.56	5.75	5.93	6.10

Tower

	30m	40m	50m	50m
Data Points Recov	21193	21193	21193	21193
Ave Spd All Data	5.42	5.72	5.86	5.73
Shear	n/a	0.24	0.13	0.01
Ave Spd January	n/a	n/a	n/a	n/a
Ave Spd February	n/a	n/a	n/a	n/a
Ave Spd March	6.08	6.42	6.60	6.56
Ave Spd April	6.16	6.51	6.66	6.63
Ave Spd May	6.46	6.84	6.97	6.88
Ave Spd June	5.15	5.39	5.52	5.42
Ave Spd July	4.72	4.95	5.13	4.96
Ave Spd August	4.71	4.98	5.13	4.93
Ave Spd Septemb	4.79	5.08	5.20	4.99

Guam - Navy

GUAM – Diurnal Wind Profile & Distribution

Site 8201 Monthly Diurnal Wind Speed Distribution

National Renewable Energy Laboratory Innovation for Our Energy Future

Guam Wind Report - Wind Rose

VERY steady wind out of the east – the trade winds

Cumulative Wind Rose - Site 8201 (60 m)

Carpe Ventem

Robi Robichaud

303-384-6969 robi.robichaud@nrel.gov National Wind Technology Center & Deployment & Industrial Partnerships National Renewable Energy Laboratory www.windpoweringamerica.gov
Further Information / References

Web Based:

Wind Powering America http://www.eere.energy.gov/windpoweringamerica/ Federal wind siting information center:

hppt://www1.eere.energy.gov/windandhydro/federalwindsiting/index.html DOE Wind Energy Program: hppt://www1.eere.energy.gov/windandhydro/ American Wind Energy Association http://www.awea.org/ Danish Wind Industry Association guided tour and information. http://www.windpower.org/en/tour/

Publications:

- Ackermann, T. (Ed's), *Wind Power in Power Systems*, John Wiley and Sons, west Sussex, England, (2005).
- Hunter, R., Elliot, G. (Ed's), *Wind-Diesel Systems*. Cambridge, UK: Cambridge University Press, 1994.
- Wind Energy Explained, J. F. Manwell, J. G. McGowan, A. L. Rogers John Wiley & Sons Ltd. 2002.
- Paul Gipe, Wind Energy Basics: A Guide to Small and Micro Wind Systems, Real Goods Solar Living Book.
- AWS Scientific Inc. "Wind Resource Assessment Handbook" produced by for the National Renewable Energy Laboratory, Subcontract number TAT-5-15283-01, 1997

Thanks to:

Ken Starcher, Alternative Energy Institute, West Texas A&M University

Important Terms

- Cut in wind speed: The wind speed that the turbine starts producing power (may be different than the speed at which the turbine starts spinning)
- Rated Wind Speed: The wind speed at which the turbine is producing "rated power" – though "rated power" is defined by the manufacture
- Cut out wind speed: The wind speed at which the turbine stops producing power
- Shut down wind speed: The wind speed at which the turbine stops to prevent damage
- Survival wind speed: Wind speed that the turbine is designed to withstand without falling over
- Availability: The amount of time that the wind turbine is available to produce power (Maintenance parameter)
- Capacity Factor: The annual energy production of a wind turbine divided by the theoretical production if it ran at full rated power all of the time (Resource parameter)
 - The stronger the resource the higher the Capacity Factor
 - Usually reported monthly or yearly
 - 25-40% is typical, up to 60% has been reported
 - Reason for the "only works 1/3 of the time" quote.

Offshore Wind Technology Today

- Initial development and demonstration stage; 22 projects, 1135 MW installed
- Fixed bottom shallow water 0-30m depth
- 2 5 MW upwind rotor configurations
- 70+ meter tower height on monopoles and gravity bases
- Mature submarine power cable technology
- Existing oil and gas experience is essential
- Reliability problems and turbine shortages have discouraged early boom in development.
- Cost are not well established in the US.

Offshore Wind Turbines Accessibility is a Challenge

