
Geothermal Technologies Office 2013 Peer Review

ENERGY Energy Efficiency & Renewable Energy

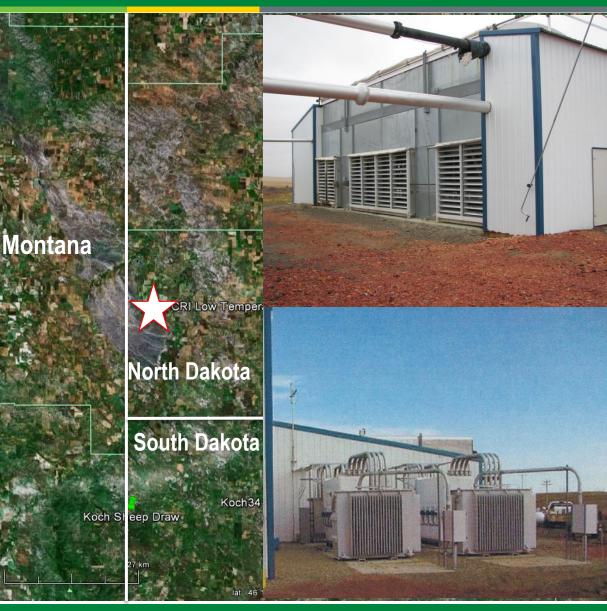
confidential, or otherwise restricted information.

 The primary objective of these projects is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150°F to 300°F) geothermal resources using binary ORC technology

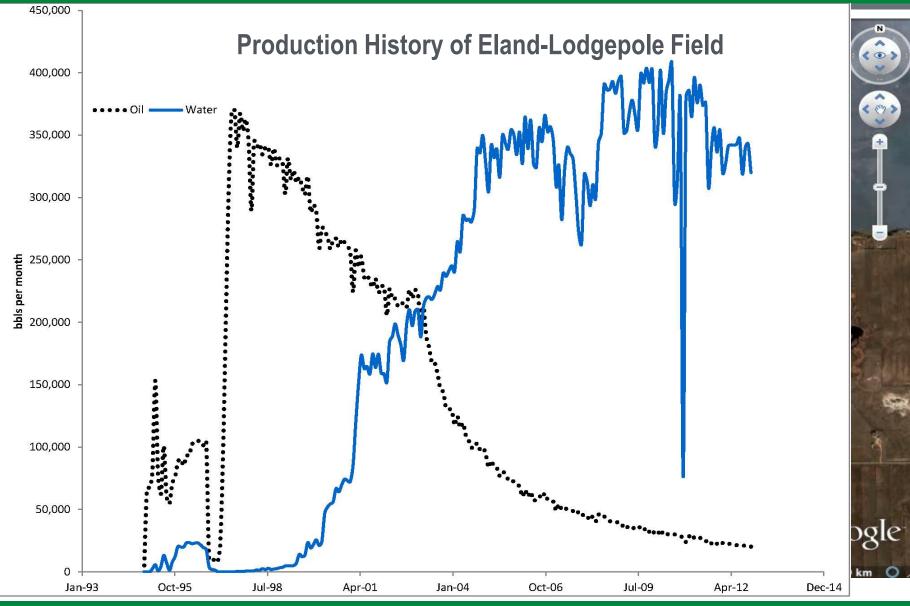
2. A second objective is to demonstrate that the technology can be replicated within a wider range of physical parameters including geothermal fluid temperatures, flow rates, and the price of electricity sales.

3. A comprehensive third objective is to widely disseminate the results of this study, to facilitate entrepreneurship in development of oil field geothermal resources and to train scientists and engineers in geothermics.

Scientific/Technical Approach



Energy Efficiency & Renewable Energy

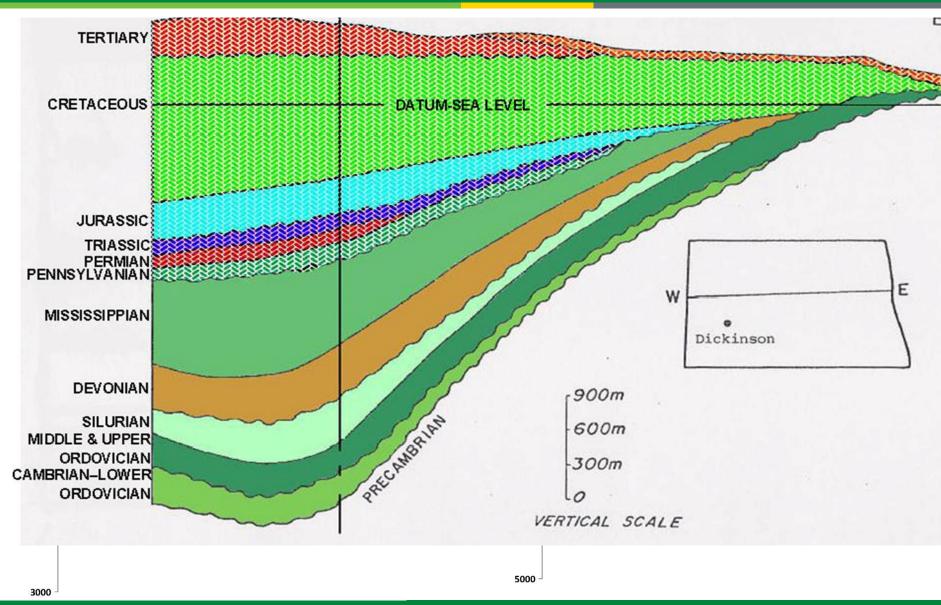

Aqua Advisory Group

- Water Flood EOR
- Cedar Creek Oil Field
- Bowman, County, ND
- 210 °F, 875 gpm, low TDS water from Lodgepole Fm.
- One of five wells total available water 1,750 gpm
- Two 125 kW ORC engines by Access Energy LLC

Scientific/Technical Approach

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

4 | US DOE Geothermal Office

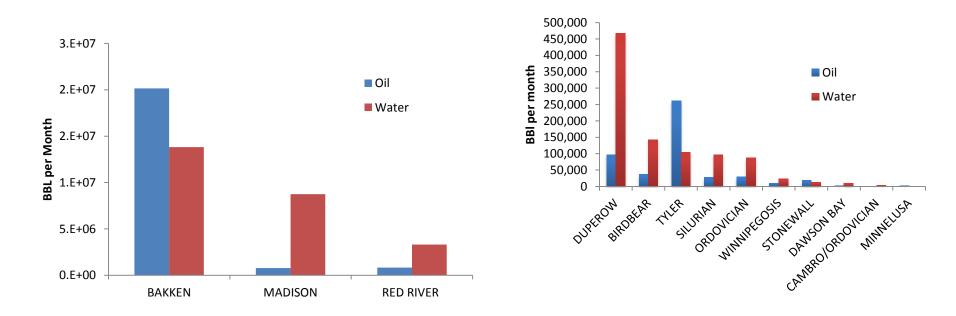

Image

Objective 1: Demonstrate Feasibility

eere.energy.gov

Scientific/Technical Approach Identify resource and document temperatures **ENERGY**

Energy Efficiency & Renewable Energy


Scientific/Technical Approach Identify main water producing formations

• The main oil and water producing formations in the Williston Basin are:

Pool	BBLS Oil	BBLS Water	WOR Ratio	BBI oil/well	BBI water/well
BAKKEN	20,046,962	13,818,929	0.7	4,163	2,869
RED RIVER	829,559	3,305,592	4.0	1,659	6,611
MADISON	699,470	8,119,405	11.6	366	4,253

Numbers are BBLS per month for Oct. 2012

U.S. DEPARTMENT OF **Energy Efficiency &** ENERGY **Renewable Energy**

The top producing oil wells in the Madison – Lodgepole formation do not yield sufficient water to

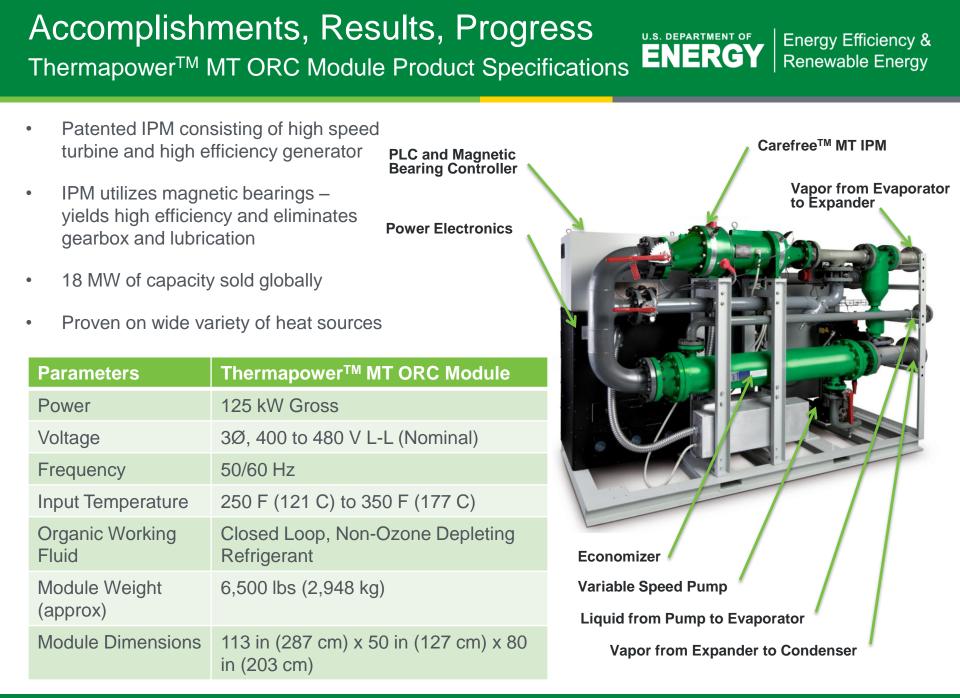
be economic as a co-produced system. If the wells were produced solely for water at rates water wells in the Lodgepole are known to produce, the power production would be significant.

Madison	100 °C		H ₂ O		Co-produced	Moderate	High
Oil bbl/day	/ H₂O bbl/day	Fluid bbl/day	gpm	lb/hr	power (kW)	Rate (kW)	Rate (kW)
28	3511	3539	98	46809	110	2,200	22,000
92	3006	3099	84	40084	80	1,600	16,000
36	2722	2758	76	36287	73	1,460	14,600

Power Production from top Madison and Red River Units in Co-Production Scenario

Unit	Oil bbl	Water bbl	No. Wells	Oil gpm	Water gpm	Total gpm	kWe
Cedar Hills S. Red R. B	292,351	2,282,671	117	262	2,045	2,307	1,170
Cedar Hills N. Red R. B	385,634	605,212	115	346	542	888	426
Medicine Pole Hills W. Red R.	27,908	127,200	22	25	114	139	62
Unit	Oil bbl	Water bbl	No. Wells	Oil gpm	Water gpm	Total gpm	kWe
				•••	• ••	01	
Renville Madison Unit	10,009			9	704	713	384
Renville Madison Unit T.R. Madison Unit	10,009 24,564	786,028	18				384 235
	· ·	786,028 416,072	18 23	9	704	713	

eere.energy.gov


Accomplishments, Results and Progress

 The average temperatures of the main producing formations were determined from corrected BHTs

Pool	BBLS Oil	BBLS Water	Max T $^{\circ}\text{C}$ at 1 Σ	Min T $^\circ C$ at 1 Σ	Avg T °C
BAKKEN	20,046,962	13,818,929	128	116	122
RED RIVER	829,559	3,305,592	147	113	130
MADISON	768,496	8,691,561	118	92	105

 The energy that can be extracted from produced waters was calculated assuming a temperature drop to 70°C and efficiencies varying by formation temperature the AE ORC

Pool	T °C	kWe
BAKKEN	122	10,946
RED RIVER	130	2,021
MADISON	105	4,011
Cedar Hills	105	348

Accomplishments, Results, Progress

Thermapower[™] XLT ORC Module Product Specifications

Energy Efficiency & Renewable Energy

Patented IPM consisting of high speed Carefree[™] XLT IPM turbine and high efficiency generator **PLC and Magnetic** Bearing Controller IPM utilizes magnetic bearings – Receiver Tank Liquid from yields high efficiency and eliminates Condenser to **Power Electronics Receiver Tank** gearbox and lubrication New development Release expected Q4 - 2013 **Parameters** Thermapower[™] XLT ORC Module 125 kW Gross Power 3Ø, 400 to 480 V L-L (Nominal) Voltage 50/60 Hz Frequency Input Temperature 180 F (82 C) to 220 F (104 C) **Organic Working** Closed Loop, Non-Ozone Depleting Fluid Refrigerant Variable Speed Pump Module Weight 6,500 lbs (2,948 kg) Liquid from Pump to Evaporator (approx) Vapor from Expander to Condenser Module Dimensions 113 in (287 cm) x 50 in (127 cm) x 80 in (203 cm) Vapor from Evaporator to Expander

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Efficiency of the Thermalpower[™] XLT ORC

Heat Source Supply Temp (F)	Theoretical Rankine Efficiency	Estimated Thermapower TM ORC Efficiency
280	17.2%	15.2%
275	17.0%	15.0%
270	16.7%	14.7%
265	16.4%	14.4%
260	16.1%	14.1%
255	15.8%	13.8%
250	15.5%	13.5%
245	15.2%	13.2%
240	14.9%	12.9%
235	14.6%	12.6%
230	14.3%	12.3%
225	13.9%	11.9%
220	13.6%	11.6%
215	13.3%	11.3%
210	13.0%	11.0%
205	12.6%	10.6%
200	12.3%	10.3%
195	12.0%	10.0%
190		9.6%
185	11.3%	9.3%
180	10.9%	8.9%

Assumptions:

1) Ambient Temp 20 F

2) Evaporator Temp Pinch 10 F

3) Condenser Temp Pinch 20 F

Heat Source Supply Temp (F)	Theoretical Rankine Efficiency	Estimated Thermapower TM ORC Efficiency
280	15.6%	13.6%
275	15.3%	13.3%
270	15.0%	13.0%
265	14.7%	12.7%
260	14.4%	12.4%
255	14.1%	12.1%
250	13.8%	11.8%
245	13.5%	11.5%
240	13.2%	11.2%
235	12.9%	10.9%
230	12.6%	10.6%
225	12.2%	10.2%
220	11.9%	9.9%
215	11.6%	9.6%
210	11.2%	9.2%
205	10.9%	8.9%
200	10.6%	8.6%
195	10.2%	8.2%
190	9.9%	7.9%
185	9.5%	7.5%
180	9.1%	7.1%

Assumptions:

1) Ambient Temp 40 F

2) Evaporator Temp Pinch 10 F

3) Condenser Temp Pinch 20 F

Accomplishments, Results and Progress

Widely Disseminate the Results

 Faculty and students have produced 15 journal articles and 45 presentations at national and regional meetings. Two GRC presentations and one AGU presentation received awards for best paper in session.

Develop a Skilled a Work Force

 Twenty-five students (5 PhD, 9 MS and 16 BS) representing five different academic disciplines and six degree programs have participated in our geothermal projects. Ten of these have completed or are completing graduate degrees with geothermal thesis topics

Help Geothermal Entrepreneurs

 We have encouraged entrepreneurship through support for designing the Low-Temperature, High-Efficiency Access Energy ORC (Thermapower[™] XLT ORC) and collaboration with Advanced Aqua Group in testing a produced water clean-up system.

Future Directions

- Installation and monitoring of power production will begin during the summer of 2013 and continue through August 2015.
- The North Dakota Industrial Commission projects that the state will need at least an additional 500 MW of power to produce oil from the Bakken formation. This is a great opportunity to establish a network of distributed power systems with co-produced fluids from quad and larger drill pads.
- Three electric cooperatives in the oil patch have expressed interest in the project. Slope Electric Cooperative; West Plains Electric Cooperative; Rough Rider Electric Cooperative
- Cooperate with AAG to install produced water cleanup systems powered by a combination of geothermal ORCs and waste gas generators.
- Continue to publish and present information on the project at national, regional and local venues.

Summary Slide

- We have compiled data and developed methods that have enabled us to reach a clear understanding of the geothermal potential of the Williston Basin.
- Power production from co-produced fluids is feasible and would be economic in unitized fields.
- Distributed binary systems in unitized or watered-out fields could provide a significant power resource.
- The driver in development should be the electrical power industry. The petroleum industry has a low level of interest.
- The Access Energy XLT IPM ORC offers an increase in power production through greater efficiency.
- Distributed power systems in oil and gas settings can have a major impact on future power resources.

Project Management

Timeline: EE002854 Low-Temp.	Planned Start Dat 1/29/201	te	i	Planned End Date /29/2010	nd Date Start Date			
Budget:	Federal Share	Cost Share		Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date		Funding needed to Complete Work
	\$1,733,864	\$1,73	4,058	\$3,467,922	\$2,175,457	\$2,17	5,457	\$722,558
Timeline:	Planne	d		Planned	Actual			Current
EE002731	Start Date		End Date		Start Date		End Date	
Co-Prod.	1/29/201	0	1/29/2010		1/31/2013		9/30/2013	
Co-Prod. Budget:	Federal Share	Cost	Share	Planned Expenses to Date	Actual Expenses to Date	W Comp	ue of /ork leted to late	Funding needed to Complete Work
	\$1,733,864	\$1,73	34,058	\$3,467,922	\$511,797		1,797	\$110,636