Geothermal Technologies Program 2013 Peer Review

Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ, DE-EE0005510

April 24, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

PI: Nicholas C. Davatzes Temple University

Topic 4: Observation Tools and Data Collection System for Reservoir Stimulation

Currently, no tool effectively provides direct monitoring of the progress of fluid pressure into the natural fracture network or surrounding formation.

• Objectives:

- Improve monitoring of fluid pathways and subsurface permeability change to optimize injection/production design.
- Explore the relationship of both seismic and aseismic deformation to fluid pressure and flow fields.
- Develop integrated geologic/geomechanical model that matches seismic and aseismic responses to pumping.
- **Impact:** LCOE improvements primarily result from better definition of the reservoir geometry and pressure field
 - Improved management of injection/production strategies to more efficiently sweep heat and minimize fluid losses to the formation
 - Improved siting of new wells/reduced potential of failed wells by assessing the fluid volume in communication with existing wells
 - Assessing stimulation potential by determining the proximity of tight wells to the reservoir
 - Avoiding development of short circuits

Technical Approach

Goal: Map the evolution of the stimulated zone and pore pressure distribution in reservoir during stimulation and production phases of EGS.

- Previous production at Brady displays associated seismicity and clearly defined surface deformation.
 - Assemble comprehensive dataset of historical seismicity and surface deformation.
 - Develop integrated geology and geomechanics model using FEM model.
 - Model link between injection/production, pore pressure, and associated deformation/seismicity.
 - Estimate stimulation volume and fluid flow from EGS using seismicity and surface deformation.
 - Provide procedure/toolkit to industry.

Team:

Surface deformation and seismic: Feigl, Mellors, Foxall Geology, geomechanics: Davatzes, Wang (Ali) Integration and management: Davatzes

Scientific/Technical Approach: Impulse & Response

Energy Efficiency & Renewable Energy

Fault map: Faulds et al., 2012 *Hydrothermal*: Coolbaugh et al., 2004 *Stress:* Moos et al., 2011 (un-published)

MEQ Catalog: LBNL

SAR: TerraSAR-X InSAR: GiPhT

Scientific/Technical Approach: Impulse & Response Time Series

U.S. DEPARTMENT OF

- Fluid injection is coupled to deformation
- Impulse:
 - Injection/production history
- Response:
 - InSAR: Surface deformation field
 - MEQs: Coulomb Friction
 Failure criterion
- Process is modeled analytically and in FEM (COMSOL & ABAQUS)
 - Geology, Structure
 - Physical Properties
 - Boundary Stresses

Scientific/Technical Approach: Impulse & Response

Summary planned and actual Accomplishments, Results and Progress

- Planned activities are summarized in the Gantt Chart
- Project timeline has been extended to match delay in Brady EGS Demonstration Project (NCE = 3 Quarters)
- Key data and initial analyses in place for monitoring EGS demonstration:
 - rapid acquisition of TerraSAR-X scenes
 - Improved seismic velocity model

						PH	IASE									ASE	
)	'ear2			Year	22			Yea	rB		γ	earB	_
Task.subtask	Description12 (ii)(iii)	member	Participating team members	12 01 180,40ji)	12 O1 280,2	12 01 200,3	12 01 210 ,4	2013001	12 01 310 2	2013003	12 01 311) 4	2013601	2014002	2014003	12 01 480,4	12 01 SEQ 1	Z UI SELU Z
Proje	ectMilesontes		<u> </u>														-
	QuarterlyIReportăiii)TândBlataTaroductsT3:ubmissionBloENGDC	Т	UW, ELLNL, ED														
	YearfIndReport	Т	UW, ELLNL, ED														
	ProjectillanningEMeetings	Т	UW, ELLNL, ED														
HA:	SEP1																-
-	In SAR®A nalysis																
.1	AcquireBirchiveBSARBata	UW	LLNL														
.2	TimeBeriesBanalysisBandarchivedBARBata	UW	LLNL														
.3	AcquireEerraSAR-XBm ages	UW															
4	TimeBreiesBanalysisBate Terra SAR-XBimages	UW															ſ
5	InverseBinodelingBinfBinSARBidataBisingBGIPhT	UW	Т														
L.6	ToolstoBtreamlineBnSARBrocessing	LUNI	UW	-													
2	SeismologicalAnalysis	LLNL															
2.1	AcquireBeismicBlataBundBlestBletectionBladvancedBnethods)BfromBlataBlase	LLNL															
2.2	Locate®vith®ayesloc/hypoDD®	LLNL															
2.3	FocalBinechanismsBindBitressBilrop	LLNL															
2.4	To ols Boß treamline Beismological Binalysis	LLNL				-											
3	Poroelastic Modeling																
3.1	CompileDatabaseB @Reservoir@ropertiesBindBmpulse-ResponseDimeBeries	UW								_	_						_
3.1a			0			.											L
	-BeelogicalBeonstraintsD		T, ED														_
	-BinSAR		UW														
	-E5 eism ologicalED ataElv)		LLNL														
3.2	Forward@mpulse-response@modeling@	UW	UW	1													
3.3	InverseBinodelingBtonstrainedBbyBinSARBindBteismicity	UW	LLNL,团	1													
3.4	Tools@and@vorflow@lo@treamline@data@ransfer@and@aodel@updates	UW		1													_
3.5	Test和coulom btstresstChangeBagainstBearthquakeBocationst2andHocalD mechanismBolutions	UW	T, O														
4	Proof DfL oncept: EGo-No-Go Decision Point			\vdash													-
	StagelTiatelReport	Т	UW, ELLNL, ED														
	Decision#Meeting	Т	UW,ELLNL,ED														
PHA:	SE2 DevelopPrototype	11147	LLNL,@T,@D	1													ļ
	Bereiopa rototype	011	العار الاربا الالب														

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Notes:IT#Temple,ID#IDRMAT,IUW#UniversityBfIWisconsin-Madison,ILNU#LawrenceLivermoreINationalLab

Summary planned and actual Accomplishments, Results and Progress

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed				
Monitor EGS Stimulation BR15-12ST1	NCE Sought 2012-10 (obtained 2013-03)	Planned 2013-03/04				
Hire PostDoc	delayed	2013-04				
Obtain/Analyze Archival InSAR	\rightarrow	2012-12				
TerraSAR-X Acquisition	\rightarrow	2011-11 to now				
MEQ data and station history	\rightarrow	2011-11 to now				
	Velocity Model: VALEST & Ambient Noise	2013-02				
	GPS Monitoring (Kremer, UNR)	2012-01 to now				
Team Database	\rightarrow	2012-01 (updating)				
Definition of data formats, reference frame	& Identification of software tools	2012-03				
Pumping Records	2004 through 2011-10 obtained	2012-09				
Integration of Geologic Data	\rightarrow	2012-11				
Analysis Workflow	\rightarrow	2012-12				
Geologic Model in EarthVision	\rightarrow	2012-07				
Initial Meshing of Geologic Model	\rightarrow	2012-09				
Project Workshop	\rightarrow	2012-12				
Initial integrated examination of Geology, In	SAR, MEQ and Pumping	2013-01				
Submit initial interferograms NGDS	\rightarrow	2013-03				

Summary Slide: Table of Key Technical Accomplishments

	FY2012 Milestone/Tech Accom	FY2013 Milestone/Tech Accom					
Analysis of Surface Deformation	 Acquired ALOS scenes Acquisition of TerraSAR-X scenes GPS monitoring (<i>added task</i>) 	 Continue TerraSAR-X acquisition Monitor stimulation of 15-12ST1 					
Result (status)	 Initial models of subsidence in vicinity of production from 1992 to present: ~20 years GPS data acquisition since 2012 	- Time series analysis of InSAR					
Analysis of Seismicity	 Acquired MEQ catalog from LBNL Velocity Model (added task) 	 Complete updated velocity model Begin advanced analysis 					
Result	 Catalog background Initial locations and moment release Velocity model (VELEST & Ambient noise) 	 Continue to refine velocity model as new MEQs are aquired Advanced analysis on-going 					
Geological Database	 EGS project analysis Acquired and formatted production/injection data 	 Expand pumping records pre 2004 Continue acquisition of new pumping data including stimulation 					
Result	- Geologic & Geomechanical model (formations, fractures, stress, phys. prop.)	- Integrated pumping record					
Analysis Framework	 Established Analysis Workflow Established data standards 	Establish workflow to enable "semi- automation" of joint analysis of InSAR and MEQ via poroelastic modeling					
Result	 Initial time series of Impulse-Response Established relative of aseismic and seismic processes to pumping activity 	 Build Workflow tools for analysis Robust time series comparison 					

Technical Results: Spatial Correspondence (88 Days)

Energy Efficiency & Renewable Energy

eere.energy.gov

Summary Technical Results: Findings and Implications

Impulse and Response:

- Deformation is highly episodic (both surface displacements and MEQ)
- Most deformation is aseismic, and energy release through MEQs is too small to significantly contribute to the surface deformations
- The most intense Surface Deformations and MEQ activity are not co-located
- MEQs are generally below the reservoir as inferred from wells and from modeling of surface deformations, but outside the region of maximum subsidence
- Both effective normal stress decrease due to injection *and* solid stress change due to contraction caused by production induce MEQs, thus confusing their association with the permeable fracture network.

Brady Reservoir:

- The region of active pumping represents only a narrow vertical conduit of enhanced permeability tapping a deeper, extensive fault-hosted reservoir
- The orientation of the subsidence zone and elastic deformation source relative to the average fault strike suggest that multiple fault segments are combine to host the reservoir and the clear locus is the common bend (and associated branching) of these fault segments.
- Differences between modeled volume change at depth and cumulative volume extraction suggest a significant component of flow into the reservoir to support production.

Impact of Technical Results: Brady Reservoir and EGS

ENERGY Re

- Deformation sources consistent with upwelling of hot water evidenced by isothermal temperature profiles (Shevenell et al., 2012) along fracture zone localized at bend in Brady Fault
- Recharge preferentially along fault strike and consistent with SHmax direction
- Well 15-12ST1 is well-positioned to connect through hot, untapped rock to the current set of producing wells

Future Directions

Milestone or Go/No-Go	Status & Expected Completion Date
Task 1: InSAR: obtain scenes from WINSAR archive	Complete: 2012, Q4
Task 1: InSAR: software tools to streamline analysis	Started (2014, Q2)
Task 1: InSAR: complete analysis of archived	Initial analysis of archived pairs: 2013, Q1 (2014, Q2): time series analysis
Task 1: InSAR: Analysis of TerraSAR-X scenes	Initial analysis of selected pairs: 2013, Q1 (2015, Q3): time series analysis
Task 2: MEQ: catalog of events with error estimates	Started (2014, Q2)
Task 2: MEQ: software tools to streamline analysis	Started (2014, Q2)
Monitor EGS Experiment	2013, Q3
Task 3: Modeling: Complete geologic and reservoir database	Database complete: 2012, Q4
Task 3: Modeling: software tools to streamline analysis	Started (2014, Q2)
Task 4: Phase 1 Report; Go/No-Go Decision	(2014, Q3)
Task 5: Brady Prototype passed to ORMAT	(2016, Q1)

• The Reservoir Monitoring using InSAR and MEQ project:

- Strong research team and dedicated field operator
- Benefits from a 20-year record of reservoir deformation in the shallow subsurface (<1-2 km) and pumping records
- Is integrated with an EGS demonstration project
- Uses multiple mechanisms for monitoring fluid migration, change in stress, and deformation during EGS reservoir management including pre-, syn-, and post- stimulation behavior of the stimulated volume
- Independently evaluates the relationship between MEQ and stimulation
- Provides a database documenting these effects in response to both EGS stimulation and reservoir management practice
- Provides rapid development of technology to monitor and guide stimulation during development of an EGS including evaluation of the longevity of the EGS flow pathways
- Provides an integrated reservoir model with higher resolution than can be achieved from monitoring well responses alone
- Ensures technology transfer is ensured by development of a prototype at the operating Brady's geothermal field & open-source code development

Project Management

U.S. DEPARTMENT OF

ENERGY

- Management Activities and Approaches:
 - Annual Science Team Industry Workshop (1st in December 2012)
 - Twice-Monthly technical conference calls (including participation by the industry partner, ORMAT, and coordination with EGS Demonstration)
 - Project organization through formal Work Flow
 - Established common data formats, reference frame, metadata
 - Hierarchy of identified software tools including import/export filters, etc.
 - Cloud project database
- Established NCE to sync project timeline with Brady EGS Demonstration
- Once data from the EGS demonstration is available research activity and the spending rate will also increase (facilitated by hiring of PostDoc + Summer research time)

Additional Information: Technical Approach

Goal: Map the evolution of the stimulated zone and pore pressure distribution in reservoir during stimulation and production phases of EGS.

Measure history of deformation:

- Surface: Synthetic Aperture Interferometric Radar (InSAR)
- Subsurface: Seismicity

<u>Model</u> deformation history as *response* to *forcing* by pumping using poroelasticity to infer:

- Pore pressure field
- Fracture network hosting fluid flow

 Stimulated vs persistent flow paths
 Develop an integrated set of software tools to monitor the evolution of permeability and fluid flow within an EGS during both the stimulation and production phases

