Geothermal Technologies Office 2013 Peer Review

Energy Efficiency & Renewable Energy

Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water

Project Officer: Ava M. Coy Total Project Funding: \$3,000,000 April 23, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Miroslav Petro Palo Alto Research Center (PARC, A Xerox Company)

Track 1 – CO_2

Project objectives

- 1) Determine <u>what</u> chemical interactions occur between relevant minerals and water-CO₂ fluids
- 2) Understand <u>how</u> the chemical interactions affect transition to and performance of a CO_2 -EGS

Purpose of the project

- Better assessment of risks associated with an EGS reservoir development using CO₂ as a working fluid;
 - Magnitude of the rock-fluid interactions
 - Location of the geochemical changes
 - Breadth of the interface zone
 - Characterize zone permeability & contact area
- More accurate quantification of the power generation capacity, and prediction of the geothermal production lifetime

U.S. DEPARTMENT OF

Technical challenges

- Starting materials composition different than expected
- Highly accurate experimental data required for a geochemical model
- Parallel experimentation complicated by diverse dissolution kinetics
- Reactive surface area is changing during the rock-fluid interaction
- Re-mineralization that may occur during an experiment would affect subsequent mineral behavior
- Difficulty in parameterizing complex interactions in the modeling software

Issues being addressed

- Improve data accuracy and build experimental complexity into the models
- Understand the surface area effect and adopt it into rock-fluid interaction model
- Specific issues related to behavior of rocks from the Cranfield CO₂ injection site

U.S. DEPARTMENT OF

Technical approach

- 1) Build a multi-channel batch system and generate mineral solubility data (2011/12)
- 2) Upgrade the system by adding a circulation flow-through channel (mid 2012)
- 3) Simulate the injection-production cycle to advance the CO₂-EGS model (finishing)
- 4) Conduct SEM analysis on pre- and after-reaction mineral samples and compare the changes in textures and mineralogy (ongoing)
- 5) Experiment using rocks from actual CO₂ injection site at Cranfield, MS (ongoing)
- 6) Create the experiment-based model (ongoing)

1) Generated a solubility map for relevant minerals under various CO₂-water & PT conditions

- 2) Added a flow-through channel and synchronized it with all five batch reactors built earlier
- 3) Determined effects of the particle size and surface area of minerals on dissolution kinetics
- 4) Improved ion detection sensitivity to identify conditions for dissolution of low-solubility minerals
- 5) Evaluated changes in mineral textures due to mineral dissolution / precipitation by SEM
- 6) Obtained kinetic parameters from the batch experiment data for key geothermal minerals
- 7) Discovered unexpected behavior of some minerals in CO₂-water at high temperature
- 8) Assessed complexity of a real rock sample through behavior of its individual components
- 9) Performed reactive transport modeling of changes in geological conditions of an EGS
- 10) Turned experimental findings on rock-fluid interactions into a model of real CO₂ injection site

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Add and validate flow-through channel	Works in-sync with five other reactors	6/30/2012
Develop rock characterization workflow	Included new particle sizing methodology	7/31/2012
Perform experiments with water-CO ₂ fluids circulation through a rock bed	Included a real rock sample from the existing CO_2 sequestration site (Cranfield)	to be completed 4/31/2013
Develop an experiment-based model of an EGS transition from water to CO_2	Initial reactive transport modeling already performed and adopted to a real setting	to be completed 7/31/2013

Energy Efficiency & **Renewable Energy**

New continuous flow / circulation channel operates together with the five batch reactors, sharing the feeding and analytical parts of the complete system.

system control station

Cranfield rock samples composition

Porosity (%)

Permeability (mD)

Porosity

O Permeability

5

8 04

0 0

8

0

œ

80

0.1 10 1000

10 15 20 25 30

XRD mineral

Chlorite

20

笥

abudance (%)

40 60 80

Grain Size and

Sedimentary Structure

fmc Silt

Sand

Mud

Two Cranfield rock samples obtained as a courtesy of Prof. Susan Hovorka and Dr. Jiemin Lu from the University of Texas at Austin

Cranfield Sample #1 - more carbonates

Cranfield Sample #2 - more chlorite

Chlorite & Illite: very little known, presumably of very low solubility

Calcite & Dolomite: well known as highly soluble in water-CO₂

Kaolinite: quickly disintegrates into 100 nm nanoparticles

eere.energy.gov

Quartz: practically insoluble

Picture from: J. Lu, M. Kordi, S.D. Hovorka, T.A. Meckel, C. A. Christopher "Reservoir characterization and complications for trapping mechanisms at Cranfield CO2 injection site" by, currently in press for the Special issue on Cranfield in International Journal of Greenhouse Control.

Matrix-supported conglomerate

CL-CU ss. with scattered pebbles,

gray CL-CU ss. matrix

low angle cross-stratified

stratified

cross-stratified

& mud laminations

Gray CL ss., low angle cross-

Grain-supported conglomerate

Light gray CL-MU ss., low angle

Light gray MU-ML ss. with mud clasts & laminae, fining upward

ML ss. with lots of mud intraclasts

U.S. DEPARTMENT OF **ENERGY**

Energy Efficiency & Renewable Energy

Effect of mineral granularity on dissolution

Energy Efficiency & Renewable Energy

Mineral Dissolution Profiles

Particle Size Distributions

Particle size bins

25-63 μm
63-150 μm

Surface area measurement BET method (argon absorption)

Particle size distribution Multi-angle light scattering

Dissolution Conditions

PARC rock-fluid system Fluid: CO₂-saturated water Temperature: 150 °C Pressure: 1,200 psi

Particle morphology changes in water-CO₂

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Labradorite

- Sieved into particle size range 63-150 μm
- Exposure to 120/150 °C water-CO₂ for up to 240 hours
- Particle size distribution by MALS
- Particle imaging by SEM

Compositional changes during dissolution

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

<u>Illite</u>

- Sieved into particle size range 63-150 μm
- Complex chemical composition expected (K,H₃O)(AI,Mg,Fe)₂(Si,AI)₄O₁₀[(OH)₂,(H₂O)]
- 240 hr exposure to 120/150 °C water-CO₂
- Spot elemental analysis by EDS
- Particle imaging by SEM

Mineral solubility response to temperature

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Initial model of 20-yr transition to CO₂-EGS

ENERGY Energy Efficiency & Renewable Energy

Simulation of temperature changes over 20 years of recycled CO₂ injection in a Cranfield-like reservoir

Animation: move your cursor above and click the "play" button

20-year status of changes in the Cranfield-like CO2-EGS reservoir

20-yr change in mineral composition

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Simulation of mineral composition changes in a Cranfield-like reservoir over 20 years of recycled CO₂ injection

<u>Mineral</u>	Volume Fraction
Quartz	0.794
Chlorite	0.118
Kaolinite	0.031
Illite	0.013
Calcite	0.011
Dolomite	0.004
Albite	0.002
Non-reactive	0.027

Animation: move your cursor above and click the "play" button

- Key activities to project completion in July 2013:
 - Finish the ongoing experiments (chlorite equilibrium and Cranfield sample)
 - Hand over the experimental data to LBNL (raw and reduced up to date)
 - Further characterize pre-/post-experiment samples (Cranfield, chlorite, illite)
 - Adopt the experimental findings into the reactive transport modeling effort
 - Refine existing geochemical models further (reactive surface area evolution)
 - Create a new CO₂-EGS model around the Cranfield reservoir setting

Milestone or Go/No-Go	Status & Expected Completion Date
Perform experiments with water-CO ₂ fluids circulation through a rock bed	Included a real rock sample from the existing CO_2 sequestration site at Cranfield, MS (to be completed by 4/31/2013)
Develop an experiment-based model of an EGS transition from water to CO ₂	Initial reactive transport modeling already performed and adopted to a real setting (to be completed by 7/31/2013)
Complete the project	7/31/2013

U.S. DEPARTMENT OF

- The kinetics can mislead the thermodynamic measurements as slowing down may often look like reaching an equilibrium
- Trace level components may easily overshadow the effect of major ones, requiring separation-based detection to deconvolve
- Even the simplest physical / chemical interactions can become overwhelmingly complex if changes affect the process itself
- Accuracy of rock-fluid interaction data is the critical factor for realistic modeling of a geothermal reservoir in transition
- Modeling can hardly capture complexity of multicomponent dynamic rock-fluid interactions without an experimental input

Project Management

- The initial delay due to program Novation from original awardee to PARC
- The financial information corresponds to the 2/28/2013 status:

Timeline:	Planned Start Date		Planned End Date		Actual Start Date		Current End Date	
	December 29, 2009		December 31, 2012		August 9, 2010		July 31, 2013	
Budget:	Federal Share	Cost Sh	are	Planned Expenses to Date	Actual Expenses to Date	Value Work Coi to D	e of mpleted ate	Funding needed to Complete Work
	\$3,000,000	\$1,004,7	705	\$3,000,000	\$2,704,782	\$3,433	3,390	\$295,218

- Everything proceeds according to the plan updated at Novation:
 - PARC prepares for completing the experimental work
 - Modeling activities at PARC accelerate
 - The workload and corresponding funding is to shift towards LBNL
 - Interacting with industry leaders and still looking for opportunities
- We expect to complete the whole project in time and within the budget