Geothermal Technologies Office 2013 Peer Review

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Self-Consuming Downhole Packer

Project Officer: Greg Stillman Total Project Funding: \$400,000 April xx, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigator (always include)

Mark Grubelich

Track Name HT Tools Objective:

- Adapt existing self-consuming epoxy system to function under geothermal environments:
 - 200 C, brine, stable for 24 48 hours
- Proof-of-concept through 3" x 3" tall cylinder demonstration under the above +/-conditions

Impact:

 "Mechanical" packer that can quickly (self-consumption) be removed from the borehole would facilitate multistimulation treatments for EGS wells and save considerable time (\$\$)

Geothermal Technologies Office 2013 Peer Review

Key challenges:

- Must avoid thermal run-away
- High temperature material properties (stable oxidizer)
- Water resistant /stable properties

Approach:

- A room temperature (125 C) self-consuming system has been successfully demonstrated at SNL – epoxy based fiber reinforced composites
- During this project, formulation were tested that survived to 315 C

- For this project:
 - Understand the limitation in the existing approach as they pertain to high temperature and brine environments (Task 1)
 - Adapt existing formulation to enhance its performance under geothermal conditions (Task 2)
 - Fabricate and demonstrate performance of a scaled monolith (Task 3)
 - Triggering system (formulation dependent):
 - Thermal
 - Chemical

U.S. DEPARTMENT OF

- General material formulations: inorganic oxidizer + metal powder + structural elements (epoxy) + curing agent + "energetic" plasticizer
- Thermal run away encountered in existing formulates; chemistries changed for high temperature curing and stability
- Two formulation successfully burned under water

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Evaluate current system, until failure/limitation	High temperature data unobtainable due to formulation exhibited thermal- runaway during cure; existing formulation of limited value	Jan 2013
Adapt materials to meet geothermal conditions	Chemistry changes to fuel/oxidizer	June 2013

Technical Advances and patent submissions

TA SD-11845 (patent submission in progress) "Self Consuming Structural Materials and Composites" Thoma/Celina/Grubelich

TA SD-12098 (patent submission in progress) "Self Consuming Downhole Drilling Packer" Vaughn/Celina/Thoma/Grubelich/Knudsen

ENERGY Energy Efficiency & Renewable Energy

- Project completed after 3" by 3" monolith test
- However if successful would pursue measurement of mechanical properties (adhesive strength, etc.), long-term environmental testing, field deployment strategy development
- High temperature (200 C, high pressure) + aqueous environment test

Milestone or Go/No-Go	Status & Expected Completion Date
3" by 3" monolith experiment	Behind schedule, new completion date expected July 2013

Summary

ENERGY Energy Efficiency & Renewable Energy

- Develop and demonstrate a safe handling, environmentally friendly, cost effective epoxy based system that
 - Maintains structural properties at 150 °C in an aqueous environment;
 - Will self-consume on demand;
 - Can be used for packers, plugs and downhole tools

FY2012-13 Target/Milestone		
Qualitatively evaluate environmental and processing limitations of baseline formulation	In progress	June 2012
Refine baseline formulation to enhance environmental stability	In progress	Nov 2012
Refine above formulation from a room temperature cure to a high temperature cure to enable in-situ fabrication	Pending	June 2013
Fabricate test article (~ 3" diameter x 3" tall) for packer demonstration; self consumes in heated water	Pending	June 2013
Communicate results	Pending	June 2013

U.S. DEPARTMENT OF	Enera
ENERGY	Renev

Timeline:	Planned	Planned	Actual	Actual /Est.
	Start Date	End Date	Start Date	End Date
	2/1/2012	2/1/2013	2/1/2012	6/30/2013

Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
	\$400,000	\$0	\$320,000	\$280,000	\$302,500	\$0

- Project leveraged heavily from existing self-consuming materials developed at Sandia National Laboratory
- Project is behind schedule, ~4 months